Google I/O is a wrap! Catch up on TensorFlow sessions View sessions

উৎস থেকে তৈরি করুন

উৎস থেকে একটি টেনসরফ্লো পিপ প্যাকেজ তৈরি করুন এবং এটি উবুন্টু লিনাক্স এবং ম্যাকওএস-এ ইনস্টল করুন। যদিও নির্দেশাবলী অন্যান্য সিস্টেমের জন্য কাজ করতে পারে, এটি শুধুমাত্র উবুন্টু এবং macOS এর জন্য পরীক্ষিত এবং সমর্থিত।

Linux এবং macOS এর জন্য সেটআপ

আপনার উন্নয়ন পরিবেশ কনফিগার করতে নিম্নলিখিত বিল্ড টুল ইনস্টল করুন।

পাইথন এবং টেনসরফ্লো প্যাকেজ নির্ভরতা ইনস্টল করুন

উবুন্টু

sudo apt install python3-dev python3-pip

ম্যাক অপারেটিং সিস্টেম

Xcode 9.2 বা তার পরে প্রয়োজন।

হোমব্রু প্যাকেজ ম্যানেজার ব্যবহার করে ইনস্টল করুন:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
export PATH="/usr/local/opt/python/libexec/bin:$PATH"
# if you are on macOS 10.12 (Sierra) use export PATH="/usr/local/bin:/usr/local/sbin:$PATH"
brew install python

TensorFlow পিপ প্যাকেজ নির্ভরতা ইনস্টল করুন (যদি ভার্চুয়াল পরিবেশ ব্যবহার করেন, --user আর্গুমেন্ট বাদ দিন):

pip install -U --user pip numpy wheel packaging
pip install -U --user keras_preprocessing --no-deps

Bazel ইনস্টল করুন

TensorFlow তৈরি করতে, আপনাকে Bazel ইনস্টল করতে হবে। Bazelisk হল Bazel ইনস্টল করার একটি সহজ উপায় এবং TensorFlow-এর জন্য স্বয়ংক্রিয়ভাবে সঠিক Bazel সংস্করণ ডাউনলোড করে৷ ব্যবহারের সুবিধার জন্য, আপনার PATH এ ব্যাজেল এক্সিকিউটেবল হিসাবে bazel যোগ করুন।

Bazelisk উপলব্ধ না হলে, আপনি ম্যানুয়ালি Bazel ইনস্টল করতে পারেন। একটি সমর্থিত Bazel সংস্করণ ইনস্টল করা নিশ্চিত করুন: tensorflow/configure.py এ উল্লেখিত _TF_MIN_BAZEL_VERSION এবং _TF_MAX_BAZEL_VERSION এর মধ্যে যেকোনো সংস্করণ।

GPU সমর্থন ইনস্টল করুন (ঐচ্ছিক, শুধুমাত্র লিনাক্স)

MacOS এর জন্য কোন GPU সমর্থন নেই।

একটি GPU-তে TensorFlow চালানোর জন্য প্রয়োজনীয় ড্রাইভার এবং অতিরিক্ত সফ্টওয়্যার ইনস্টল করতে GPU সমর্থন নির্দেশিকা পড়ুন।

TensorFlow সোর্স কোড ডাউনলোড করুন

TensorFlow সংগ্রহস্থল ক্লোন করতে গিট ব্যবহার করুন:

git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow

রেপো ডিফল্ট master ডেভেলপমেন্ট শাখায়। আপনি নির্মাণ করতে একটি রিলিজ শাখা চেকআউট করতে পারেন:

git checkout branch_name  # r2.2, r2.3, etc.

বিল্ড কনফিগার করুন

আপনার TensorFlow উৎস গাছের মূলে ./configure চালিয়ে আপনার সিস্টেম বিল্ড কনফিগার করুন। এই স্ক্রিপ্টটি আপনাকে TensorFlow নির্ভরতার অবস্থানের জন্য অনুরোধ করে এবং অতিরিক্ত বিল্ড কনফিগারেশন বিকল্পের জন্য জিজ্ঞাসা করে (উদাহরণস্বরূপ কম্পাইলার পতাকা)।

./configure

ভার্চুয়াল পরিবেশ ব্যবহার করলে, python configure.py পরিবেশের মধ্যে পাথকে অগ্রাধিকার দেয়, যেখানে ./configure পরিবেশের বাইরের পাথগুলিকে অগ্রাধিকার দেয়। উভয় ক্ষেত্রেই আপনি ডিফল্ট পরিবর্তন করতে পারেন।

নমুনা অধিবেশন

নিম্নলিখিত ./configure স্ক্রিপ্টের একটি নমুনা রান দেখায় (আপনার সেশন আলাদা হতে পারে):

কনফিগারেশন অপশন

GPU সমর্থন

GPU সমর্থনের জন্য, কনফিগারেশনের সময় cuda cuda=Y সেট করুন এবং CUDA এবং cuDNN এর সংস্করণগুলি নির্দিষ্ট করুন৷ আপনার সিস্টেমে CUDA বা cuDNN এর একাধিক সংস্করণ ইনস্টল করা থাকলে, ডিফল্টের উপর নির্ভর না করে স্পষ্টভাবে সংস্করণটি সেট করুন। ./configure আপনার সিস্টেমের CUDA লাইব্রেরিতে প্রতীকী লিঙ্ক তৈরি করে—তাই যদি আপনি আপনার CUDA লাইব্রেরি পাথগুলি আপডেট করেন, এই কনফিগারেশন ধাপটি নির্মাণের আগে আবার চালাতে হবে।

অপ্টিমাইজেশান

কম্পাইলেশন অপ্টিমাইজেশান ফ্ল্যাগের জন্য, ডিফল্ট ( -march=native ) আপনার মেশিনের CPU প্রকারের জন্য জেনারেট করা কোডটিকে অপ্টিমাইজ করে। যাইহোক, একটি ভিন্ন CPU টাইপের জন্য TensorFlow তৈরি করলে, আরও নির্দিষ্ট অপ্টিমাইজেশান ফ্ল্যাগ বিবেচনা করুন। উদাহরণের জন্য GCC ম্যানুয়াল দেখুন।

পূর্বনির্ধারিত কনফিগারেশন

কিছু প্রি-কনফিগার করা বিল্ড কনফিগার উপলব্ধ রয়েছে যা bazel build কমান্ডে যোগ করা যেতে পারে, উদাহরণস্বরূপ:

  • --config=dbg — ডিবাগ তথ্য দিয়ে তৈরি করুন। বিস্তারিত জানার জন্য CONTRIBUTING.md দেখুন।
  • --config=mkl — Intel® MKL- DNN-এর জন্য সমর্থন।
  • --config=monolithic — বেশিরভাগ স্ট্যাটিক, একশিলা বিল্ডের জন্য কনফিগারেশন।
  • --config=v1 — 2.x এর পরিবর্তে টেনসরফ্লো 1.x তৈরি করুন।

পিপ প্যাকেজ তৈরি করুন

টেনসরফ্লো 2.x

Bazel ইনস্টল করুন এবং শুধুমাত্র CPU সমর্থন সহ bazel build ব্যবহার করুন:

bazel build [--config=option] //tensorflow/tools/pip_package:build_pip_package

GPU সমর্থন

GPU সমর্থন সহ একটি TensorFlow প্যাকেজ নির্মাতা তৈরি করতে:

bazel build --config=cuda [--config=option] //tensorflow/tools/pip_package:build_pip_package

টেনসরফ্লো 1.x

একটি পুরানো TensorFlow 1.x প্যাকেজ তৈরি করতে, --config=v1 বিকল্পটি ব্যবহার করুন:

bazel build --config=v1 [--config=option] //tensorflow/tools/pip_package:build_pip_package

Bazel বিল্ড অপশন

বিল্ড অপশনের জন্য Bazel কমান্ড-লাইন রেফারেন্স পড়ুন।

উৎস থেকে TensorFlow তৈরি করা অনেক RAM ব্যবহার করতে পারে। যদি আপনার সিস্টেম মেমরি-সীমাবদ্ধ হয়, তাহলে Bazel এর RAM ব্যবহার সীমিত করুন: --local_ram_resources=2048

অফিসিয়াল TensorFlow প্যাকেজগুলি একটি GCC 7.3 টুলচেন দিয়ে তৈরি করা হয়েছে যা manylinux2010 প্যাকেজ মান মেনে চলে।

GCC 5 এবং পরবর্তীতে, পুরানো ABI-এর সাথে সামঞ্জস্যতা ব্যবহার করে তৈরি করা যেতে পারে: --cxxopt="-D_GLIBCXX_USE_CXX11_ABI=0" । ABI সামঞ্জস্য নিশ্চিত করে যে অফিসিয়াল টেনসরফ্লো প্যাকেজের বিপরীতে তৈরি কাস্টম অপস GCC 5 বিল্ট প্যাকেজের সাথে কাজ করা চালিয়ে যাচ্ছে।

প্যাকেজ তৈরি করুন

bazel build কমান্ড build_pip_package নামে একটি এক্সিকিউটেবল তৈরি করে — এটি সেই প্রোগ্রাম যা pip প্যাকেজ তৈরি করে। /tmp/tensorflow_pkg ডিরেক্টরিতে একটি .whl প্যাকেজ তৈরি করতে নীচে দেখানো হিসাবে এক্সিকিউটেবল চালান।

একটি রিলিজ শাখা থেকে তৈরি করতে:

./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

মাস্টার থেকে তৈরি করতে, সঠিক নির্ভরতা পেতে --nightly_flag ব্যবহার করুন:

./bazel-bin/tensorflow/tools/pip_package/build_pip_package --nightly_flag /tmp/tensorflow_pkg

যদিও একই উৎস গাছের নিচে CUDA এবং নন-CUDA কনফিগারেশন তৈরি করা সম্ভব, একই সোর্স ট্রিতে এই দুটি কনফিগারেশনের মধ্যে স্যুইচ করার সময় bazel clean চালানোর পরামর্শ দেওয়া হয়।

প্যাকেজটি ইনস্টল করুন

জেনারেট করা .whl ফাইলের ফাইলের নাম TensorFlow সংস্করণ এবং আপনার প্ল্যাটফর্মের উপর নির্ভর করে। প্যাকেজ ইনস্টল করতে pip install ব্যবহার করুন, উদাহরণস্বরূপ:

pip install /tmp/tensorflow_pkg/tensorflow-version-tags.whl

ডকার লিনাক্স তৈরি করে

টেনসরফ্লো-এর ডকার ডেভেলপমেন্ট ইমেজগুলি উৎস থেকে লিনাক্স প্যাকেজ তৈরি করার জন্য একটি পরিবেশ সেট আপ করার একটি সহজ উপায়। এই চিত্রগুলিতে ইতিমধ্যেই টেনসরফ্লো তৈরির জন্য প্রয়োজনীয় উত্স কোড এবং নির্ভরতা রয়েছে৷ ইনস্টলেশন নির্দেশাবলী এবং উপলব্ধ ইমেজ ট্যাগের তালিকার জন্য TensorFlow ডকার গাইডে যান।

শুধুমাত্র সিপিইউ

নিম্নলিখিত উদাহরণটি সর্বশেষ TensorFlow সোর্স কোড থেকে একটি CPU-শুধু প্যাকেজ তৈরি করতে :devel চিত্র ব্যবহার করে। উপলব্ধ -devel -devel ট্যাগের জন্য ডকার গাইড দেখুন।

সর্বশেষ উন্নয়ন চিত্র ডাউনলোড করুন এবং একটি ডকার কন্টেইনার শুরু করুন যা আপনি পিপ প্যাকেজ তৈরি করতে ব্যবহার করবেন:

docker pull tensorflow/tensorflow:devel
docker run -it -w /tensorflow_src -v $PWD:/mnt -e HOST_PERMS="$(id -u):$(id -g)" \
    tensorflow/tensorflow:devel bash

git pull  # within the container, download the latest source code

উপরের docker run কমান্ডটি /tensorflow_src ডিরেক্টরিতে একটি শেল শুরু করে - উৎস গাছের মূল। এটি কন্টেইনারের /mnt ডিরেক্টরিতে হোস্টের বর্তমান ডিরেক্টরি মাউন্ট করে এবং একটি পরিবেশগত ভেরিয়েবলের মাধ্যমে হোস্ট ব্যবহারকারীর তথ্য কন্টেইনারে প্রেরণ করে (অনুমতি সেট করতে ব্যবহৃত হয়—ডকার এটিকে কঠিন করতে পারে)।

বিকল্পভাবে, একটি কন্টেইনারের মধ্যে TensorFlow-এর হোস্ট কপি তৈরি করতে, কন্টেইনারের /tensorflow ডিরেক্টরিতে হোস্ট সোর্স ট্রি মাউন্ট করুন:

docker run -it -w /tensorflow -v /path/to/tensorflow:/tensorflow -v $PWD:/mnt \
    -e HOST_PERMS="\\((id -u):\\)(id -g)" tensorflow/tensorflow:devel bash

সোর্স ট্রি সেট আপ করে, কনটেইনারের ভার্চুয়াল পরিবেশের মধ্যে টেনসরফ্লো প্যাকেজ তৈরি করুন:

  1. বিল্ড কনফিগার করুন - এটি ব্যবহারকারীকে বিল্ড কনফিগারেশন প্রশ্নের উত্তর দিতে অনুরোধ করে।
  2. পিপ প্যাকেজ তৈরি করতে ব্যবহৃত টুলটি তৈরি করুন।
  3. পিপ প্যাকেজ তৈরি করতে টুলটি চালান।
  4. কন্টেইনারের বাইরের জন্য ফাইলের মালিকানা অনুমতি সামঞ্জস্য করুন।
./configure  # answer prompts or use defaults

bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package

./bazel-bin/tensorflow/tools/pip_package/build_pip_package /mnt  # create package

chown $HOST_PERMS /mnt/tensorflow-version-tags.whl

পাত্রের মধ্যে প্যাকেজ ইনস্টল এবং যাচাই করুন:

pip uninstall tensorflow  # remove current version

pip install /mnt/tensorflow-version-tags.whl
cd /tmp  # don't import from source directory
python -c "import tensorflow as tf; print(tf.__version__)"

আপনার হোস্ট মেশিনে, টেনসরফ্লো পিপ প্যাকেজটি বর্তমান ডিরেক্টরিতে রয়েছে (হোস্ট ব্যবহারকারীর অনুমতি সহ): ./tensorflow- version - tags .whl

GPU সমর্থন

ডকার হল টেনসরফ্লো-এর জন্য GPU সমর্থন তৈরি করার সবচেয়ে সহজ উপায় যেহেতু হোস্ট মেশিনের জন্য শুধুমাত্র NVIDIA® ড্রাইভার প্রয়োজন ( NVIDIA® CUDA® টুলকিটটি ইনস্টল করতে হবে না)। এনভিডিয়া-ডকার (শুধুমাত্র লিনাক্স) সেট আপ করতে GPU সমর্থন নির্দেশিকা এবং TensorFlow ডকার গাইড পড়ুন।

নিম্নলিখিত উদাহরণটি TensorFlow :devel-gpu ইমেজ ডাউনলোড করে এবং GPU-সক্ষম কন্টেইনার চালানোর জন্য nvidia-docker ব্যবহার করে। এই ডেভেলপমেন্ট ইমেজটি GPU সমর্থন সহ একটি পিপ প্যাকেজ তৈরি করতে কনফিগার করা হয়েছে:

docker pull tensorflow/tensorflow:devel-gpu
docker run --gpus all -it -w /tensorflow -v $PWD:/mnt -e HOST_PERMS="$(id -u):$(id -g)" \
    tensorflow/tensorflow:devel-gpu bash
git pull  # within the container, download the latest source code

তারপর, কন্টেইনারের ভার্চুয়াল পরিবেশের মধ্যে, GPU সমর্থন সহ TensorFlow প্যাকেজ তৈরি করুন:

./configure  # answer prompts or use defaults

bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

./bazel-bin/tensorflow/tools/pip_package/build_pip_package /mnt  # create package

chown $HOST_PERMS /mnt/tensorflow-version-tags.whl

পাত্রের মধ্যে প্যাকেজটি ইনস্টল করুন এবং যাচাই করুন এবং একটি GPU পরীক্ষা করুন:

pip uninstall tensorflow  # remove current version

pip install /mnt/tensorflow-version-tags.whl
cd /tmp  # don't import from source directory
python -c "import tensorflow as tf; print(\"Num GPUs Available: \", len(tf.config.list_physical_devices('GPU')))"

পরীক্ষিত বিল্ড কনফিগারেশন

লিনাক্স

সিপিইউ

সংস্করণ পাইথন সংস্করণ কম্পাইলার সরঞ্জাম তৈরি করুন
tensorflow-2.9.0 3.7-3.10 GCC 9.3.1 Bazel 5.0.0
tensorflow-2.8.0 3.7-3.10 GCC 7.3.1 Bazel 4.2.1
tensorflow-2.7.0 3.7-3.9 GCC 7.3.1 Bazel 3.7.2
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 ব্যাজেল 3.1.0
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 ব্যাজেল 3.1.0
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0
tensorflow-2.1.0 2.7, 3.5-3.7 GCC 7.3.1 Bazel 0.27.1
tensorflow-2.0.0 2.7, 3.3-3.7 GCC 7.3.1 Bazel 0.26.1
tensorflow-1.15.0 2.7, 3.3-3.7 GCC 7.3.1 Bazel 0.26.1
tensorflow-1.14.0 2.7, 3.3-3.7 GCC 4.8 Bazel 0.24.1
tensorflow-1.13.1 2.7, 3.3-3.7 GCC 4.8 Bazel 0.19.2
tensorflow-1.12.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.11.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.10.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.9.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.11.0
tensorflow-1.8.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.7.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.6.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0
tensorflow-1.5.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0
tensorflow-1.4.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4
tensorflow-1.3.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.2.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.1.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2
tensorflow-1.0.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2

জিপিইউ

সংস্করণ পাইথন সংস্করণ কম্পাইলার সরঞ্জাম তৈরি করুন cuDNN চুদা
tensorflow-2.9.0 3.7-3.10 GCC 9.3.1 Bazel 5.0.0 8.1 11.2
tensorflow-2.8.0 3.7-3.10 GCC 7.3.1 Bazel 4.2.1 8.1 11.2
tensorflow-2.7.0 3.7-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 ব্যাজেল 3.1.0 ৮.০ 11.0
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 ব্যাজেল 3.1.0 7.6 10.1
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0 7.6 10.1
tensorflow-2.1.0 2.7, 3.5-3.7 GCC 7.3.1 Bazel 0.27.1 7.6 10.1
tensorflow-2.0.0 2.7, 3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.15.0 2.7, 3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.14.0 2.7, 3.3-3.7 GCC 4.8 Bazel 0.24.1 7.4 10.0
tensorflow_gpu-1.13.1 2.7, 3.3-3.7 GCC 4.8 Bazel 0.19.2 7.4 10.0
tensorflow_gpu-1.12.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.11.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.10.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.9.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.11.0 7 9
tensorflow_gpu-1.8.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0 7 9
tensorflow_gpu-1.7.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.6.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.5.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0 7 9
tensorflow_gpu-1.4.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4 6 8
tensorflow_gpu-1.3.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 6 8
tensorflow_gpu-1.2.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 5.1 8
tensorflow_gpu-1.1.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8

ম্যাক অপারেটিং সিস্টেম

সিপিইউ

সংস্করণ পাইথন সংস্করণ কম্পাইলার সরঞ্জাম তৈরি করুন
tensorflow-2.9.0 3.7-3.10 xcode 10.14 থেকে ঝনঝন Bazel 5.0.0
tensorflow-2.8.0 3.7-3.10 xcode 10.14 থেকে ঝনঝন Bazel 4.2.1
tensorflow-2.7.0 3.7-3.9 xcode 10.11 থেকে ঝনঝন Bazel 3.7.2
tensorflow-2.6.0 3.6-3.9 xcode 10.11 থেকে ঝনঝন Bazel 3.7.2
tensorflow-2.5.0 3.6-3.9 xcode 10.11 থেকে ঝনঝন Bazel 3.7.2
tensorflow-2.4.0 3.6-3.8 xcode 10.3 থেকে ঝনঝন ব্যাজেল 3.1.0
tensorflow-2.3.0 3.5-3.8 xcode 10.1 থেকে ঝনঝন ব্যাজেল 3.1.0
tensorflow-2.2.0 3.5-3.8 xcode 10.1 থেকে ঝনঝন Bazel 2.0.0
tensorflow-2.1.0 2.7, 3.5-3.7 xcode 10.1 থেকে ঝনঝন Bazel 0.27.1
tensorflow-2.0.0 2.7, 3.5-3.7 xcode 10.1 থেকে ঝনঝন Bazel 0.27.1
tensorflow-2.0.0 2.7, 3.3-3.7 xcode 10.1 থেকে ঝনঝন Bazel 0.26.1
tensorflow-1.15.0 2.7, 3.3-3.7 xcode 10.1 থেকে ঝনঝন Bazel 0.26.1
tensorflow-1.14.0 2.7, 3.3-3.7 xcode থেকে ঝনঝন Bazel 0.24.1
tensorflow-1.13.1 2.7, 3.3-3.7 xcode থেকে ঝনঝন Bazel 0.19.2
tensorflow-1.12.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.15.0
tensorflow-1.11.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.15.0
tensorflow-1.10.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.15.0
tensorflow-1.9.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.11.0
tensorflow-1.8.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.10.1
tensorflow-1.7.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.10.1
tensorflow-1.6.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.8.1
tensorflow-1.5.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.8.1
tensorflow-1.4.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.5.4
tensorflow-1.3.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.4.5
tensorflow-1.2.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.4.5
tensorflow-1.1.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.4.2
tensorflow-1.0.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন Bazel 0.4.2

জিপিইউ

সংস্করণ পাইথন সংস্করণ কম্পাইলার সরঞ্জাম তৈরি করুন cuDNN চুদা
tensorflow_gpu-1.1.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন শব্দ Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7, 3.3-3.6 xcode থেকে ঝনঝন শব্দ Bazel 0.4.2 5.1 8