¡Reserva! Google I / O regresa del 18 al 20 de mayo Regístrese ahora
Se usó la API de Cloud Translation para traducir esta página.
Switch to English

Creación de modelos de Keras con capas TFL

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar cuaderno

Visión general

Puede utilizar capas de TFL Keras para construir modelos de Keras con monotonicidad y otras restricciones de forma. Este ejemplo crea y entrena un modelo de celosía calibrado para el conjunto de datos cardíacos UCI utilizando capas TFL.

En un modelo de celosía calibrado, cada característica se transforma mediante una tfl.layers.PWLCalibration o tfl.layers.CategoricalCalibration y los resultados se fusionan de forma no lineal utilizando una tfl.layers.Lattice .

Configuración

Instalación del paquete TF Lattice:

pip install -q tensorflow-lattice pydot

Importación de paquetes requeridos:

import tensorflow as tf

import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
from tensorflow import feature_column as fc
logging.disable(sys.maxsize)

Descarga del conjunto de datos UCI Statlog (Heart):

# UCI Statlog (Heart) dataset.
csv_file = tf.keras.utils.get_file(
    'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
training_data_df = pd.read_csv(csv_file).sample(
    frac=1.0, random_state=41).reset_index(drop=True)
training_data_df.head()

Configuración de los valores predeterminados utilizados para el entrenamiento en esta guía:

LEARNING_RATE = 0.1
BATCH_SIZE = 128
NUM_EPOCHS = 100

Modelo secuencial de Keras

Este ejemplo crea un modelo secuencial de Keras y solo usa capas TFL.

Las capas de celosía esperan que la input[i] esté dentro de [0, lattice_sizes[i] - 1.0] , así que necesitamos definir los tamaños de celosía antes de las capas de calibración para poder especificar correctamente el rango de salida de las capas de calibración.

# Lattice layer expects input[i] to be within [0, lattice_sizes[i] - 1.0], so
lattice_sizes = [3, 2, 2, 2, 2, 2, 2]

Utilizamos una capa tfl.layers.ParallelCombination para agrupar capas de calibración que deben ejecutarse en paralelo para poder crear un modelo secuencial.

combined_calibrators = tfl.layers.ParallelCombination()

Creamos una capa de calibración para cada característica y la agregamos a la capa de combinación paralela. Para características numéricas usamos tfl.layers.PWLCalibration , y para características categóricas usamos tfl.layers.CategoricalCalibration .

# ############### age ###############
calibrator = tfl.layers.PWLCalibration(
    # Every PWLCalibration layer must have keypoints of piecewise linear
    # function specified. Easiest way to specify them is to uniformly cover
    # entire input range by using numpy.linspace().
    input_keypoints=np.linspace(
        training_data_df['age'].min(), training_data_df['age'].max(), num=5),
    # You need to ensure that input keypoints have same dtype as layer input.
    # You can do it by setting dtype here or by providing keypoints in such
    # format which will be converted to desired tf.dtype by default.
    dtype=tf.float32,
    # Output range must correspond to expected lattice input range.
    output_min=0.0,
    output_max=lattice_sizes[0] - 1.0,
)
combined_calibrators.append(calibrator)

# ############### sex ###############
# For boolean features simply specify CategoricalCalibration layer with 2
# buckets.
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[1] - 1.0,
    # Initializes all outputs to (output_min + output_max) / 2.0.
    kernel_initializer='constant')
combined_calibrators.append(calibrator)

# ############### cp ###############
calibrator = tfl.layers.PWLCalibration(
    # Here instead of specifying dtype of layer we convert keypoints into
    # np.float32.
    input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32),
    output_min=0.0,
    output_max=lattice_sizes[2] - 1.0,
    monotonicity='increasing',
    # You can specify TFL regularizers as a tuple ('regularizer name', l1, l2).
    kernel_regularizer=('hessian', 0.0, 1e-4))
combined_calibrators.append(calibrator)

# ############### trestbps ###############
calibrator = tfl.layers.PWLCalibration(
    # Alternatively, you might want to use quantiles as keypoints instead of
    # uniform keypoints
    input_keypoints=np.quantile(training_data_df['trestbps'],
                                np.linspace(0.0, 1.0, num=5)),
    dtype=tf.float32,
    # Together with quantile keypoints you might want to initialize piecewise
    # linear function to have 'equal_slopes' in order for output of layer
    # after initialization to preserve original distribution.
    kernel_initializer='equal_slopes',
    output_min=0.0,
    output_max=lattice_sizes[3] - 1.0,
    # You might consider clamping extreme inputs of the calibrator to output
    # bounds.
    clamp_min=True,
    clamp_max=True,
    monotonicity='increasing')
combined_calibrators.append(calibrator)

# ############### chol ###############
calibrator = tfl.layers.PWLCalibration(
    # Explicit input keypoint initialization.
    input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
    dtype=tf.float32,
    output_min=0.0,
    output_max=lattice_sizes[4] - 1.0,
    # Monotonicity of calibrator can be decreasing. Note that corresponding
    # lattice dimension must have INCREASING monotonicity regardless of
    # monotonicity direction of calibrator.
    monotonicity='decreasing',
    # Convexity together with decreasing monotonicity result in diminishing
    # return constraint.
    convexity='convex',
    # You can specify list of regularizers. You are not limited to TFL
    # regularizrs. Feel free to use any :)
    kernel_regularizer=[('laplacian', 0.0, 1e-4),
                        tf.keras.regularizers.l1_l2(l1=0.001)])
combined_calibrators.append(calibrator)

# ############### fbs ###############
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[5] - 1.0,
    # For categorical calibration layer monotonicity is specified for pairs
    # of indices of categories. Output for first category in pair will be
    # smaller than output for second category.
    #
    # Don't forget to set monotonicity of corresponding dimension of Lattice
    # layer to '1'.
    monotonicities=[(0, 1)],
    # This initializer is identical to default one('uniform'), but has fixed
    # seed in order to simplify experimentation.
    kernel_initializer=tf.keras.initializers.RandomUniform(
        minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1))
combined_calibrators.append(calibrator)

# ############### restecg ###############
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=3,
    output_min=0.0,
    output_max=lattice_sizes[6] - 1.0,
    # Categorical monotonicity can be partial order.
    monotonicities=[(0, 1), (0, 2)],
    # Categorical calibration layer supports standard Keras regularizers.
    kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001),
    kernel_initializer='constant')
combined_calibrators.append(calibrator)

Luego creamos una capa de celosía para fusionar de forma no lineal las salidas de los calibradores.

Tenga en cuenta que debemos especificar la monotonicidad de la celosía para aumentar para las dimensiones requeridas. La composición con la dirección de la monotonicidad en la calibración dará como resultado la dirección correcta de monotonicidad de extremo a extremo. Esto incluye la monotonicidad parcial de la capa CategoricalCalibration.

lattice = tfl.layers.Lattice(
    lattice_sizes=lattice_sizes,
    monotonicities=[
        'increasing', 'none', 'increasing', 'increasing', 'increasing',
        'increasing', 'increasing'
    ],
    output_min=0.0,
    output_max=1.0)

Luego podemos crear un modelo secuencial usando los calibradores combinados y las capas de celosía.

model = tf.keras.models.Sequential()
model.add(combined_calibrators)
model.add(lattice)

El entrenamiento funciona igual que cualquier otro modelo de keras.

features = training_data_df[[
    'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg'
]].values.astype(np.float32)
target = training_data_df[['target']].values.astype(np.float32)

model.compile(
    loss=tf.keras.losses.mean_squared_error,
    optimizer=tf.keras.optimizers.Adagrad(learning_rate=LEARNING_RATE))
model.fit(
    features,
    target,
    batch_size=BATCH_SIZE,
    epochs=NUM_EPOCHS,
    validation_split=0.2,
    shuffle=False,
    verbose=0)

model.evaluate(features, target)
10/10 [==============================] - 0s 1ms/step - loss: 0.1551
0.15506614744663239

Modelo funcional de Keras

Este ejemplo utiliza una API funcional para la construcción del modelo Keras.

Como se mencionó en la sección anterior, las capas de celosía esperan que la input[i] esté dentro de [0, lattice_sizes[i] - 1.0] , por lo que necesitamos definir los tamaños de celosía antes de las capas de calibración para que podamos especificar correctamente el rango de salida de la capas de calibración.

# We are going to have 2-d embedding as one of lattice inputs.
lattice_sizes = [3, 2, 2, 3, 3, 2, 2]

Para cada característica, necesitamos crear una capa de entrada seguida de una capa de calibración. Para características numéricas usamos tfl.layers.PWLCalibration y para características categóricas usamos tfl.layers.CategoricalCalibration .

model_inputs = []
lattice_inputs = []
# ############### age ###############
age_input = tf.keras.layers.Input(shape=[1], name='age')
model_inputs.append(age_input)
age_calibrator = tfl.layers.PWLCalibration(
    # Every PWLCalibration layer must have keypoints of piecewise linear
    # function specified. Easiest way to specify them is to uniformly cover
    # entire input range by using numpy.linspace().
    input_keypoints=np.linspace(
        training_data_df['age'].min(), training_data_df['age'].max(), num=5),
    # You need to ensure that input keypoints have same dtype as layer input.
    # You can do it by setting dtype here or by providing keypoints in such
    # format which will be converted to desired tf.dtype by default.
    dtype=tf.float32,
    # Output range must correspond to expected lattice input range.
    output_min=0.0,
    output_max=lattice_sizes[0] - 1.0,
    monotonicity='increasing',
    name='age_calib',
)(
    age_input)
lattice_inputs.append(age_calibrator)

# ############### sex ###############
# For boolean features simply specify CategoricalCalibration layer with 2
# buckets.
sex_input = tf.keras.layers.Input(shape=[1], name='sex')
model_inputs.append(sex_input)
sex_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[1] - 1.0,
    # Initializes all outputs to (output_min + output_max) / 2.0.
    kernel_initializer='constant',
    name='sex_calib',
)(
    sex_input)
lattice_inputs.append(sex_calibrator)

# ############### cp ###############
cp_input = tf.keras.layers.Input(shape=[1], name='cp')
model_inputs.append(cp_input)
cp_calibrator = tfl.layers.PWLCalibration(
    # Here instead of specifying dtype of layer we convert keypoints into
    # np.float32.
    input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32),
    output_min=0.0,
    output_max=lattice_sizes[2] - 1.0,
    monotonicity='increasing',
    # You can specify TFL regularizers as tuple ('regularizer name', l1, l2).
    kernel_regularizer=('hessian', 0.0, 1e-4),
    name='cp_calib',
)(
    cp_input)
lattice_inputs.append(cp_calibrator)

# ############### trestbps ###############
trestbps_input = tf.keras.layers.Input(shape=[1], name='trestbps')
model_inputs.append(trestbps_input)
trestbps_calibrator = tfl.layers.PWLCalibration(
    # Alternatively, you might want to use quantiles as keypoints instead of
    # uniform keypoints
    input_keypoints=np.quantile(training_data_df['trestbps'],
                                np.linspace(0.0, 1.0, num=5)),
    dtype=tf.float32,
    # Together with quantile keypoints you might want to initialize piecewise
    # linear function to have 'equal_slopes' in order for output of layer
    # after initialization to preserve original distribution.
    kernel_initializer='equal_slopes',
    output_min=0.0,
    output_max=lattice_sizes[3] - 1.0,
    # You might consider clamping extreme inputs of the calibrator to output
    # bounds.
    clamp_min=True,
    clamp_max=True,
    monotonicity='increasing',
    name='trestbps_calib',
)(
    trestbps_input)
lattice_inputs.append(trestbps_calibrator)

# ############### chol ###############
chol_input = tf.keras.layers.Input(shape=[1], name='chol')
model_inputs.append(chol_input)
chol_calibrator = tfl.layers.PWLCalibration(
    # Explicit input keypoint initialization.
    input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
    output_min=0.0,
    output_max=lattice_sizes[4] - 1.0,
    # Monotonicity of calibrator can be decreasing. Note that corresponding
    # lattice dimension must have INCREASING monotonicity regardless of
    # monotonicity direction of calibrator.
    monotonicity='decreasing',
    # Convexity together with decreasing monotonicity result in diminishing
    # return constraint.
    convexity='convex',
    # You can specify list of regularizers. You are not limited to TFL
    # regularizrs. Feel free to use any :)
    kernel_regularizer=[('laplacian', 0.0, 1e-4),
                        tf.keras.regularizers.l1_l2(l1=0.001)],
    name='chol_calib',
)(
    chol_input)
lattice_inputs.append(chol_calibrator)

# ############### fbs ###############
fbs_input = tf.keras.layers.Input(shape=[1], name='fbs')
model_inputs.append(fbs_input)
fbs_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[5] - 1.0,
    # For categorical calibration layer monotonicity is specified for pairs
    # of indices of categories. Output for first category in pair will be
    # smaller than output for second category.
    #
    # Don't forget to set monotonicity of corresponding dimension of Lattice
    # layer to '1'.
    monotonicities=[(0, 1)],
    # This initializer is identical to default one ('uniform'), but has fixed
    # seed in order to simplify experimentation.
    kernel_initializer=tf.keras.initializers.RandomUniform(
        minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1),
    name='fbs_calib',
)(
    fbs_input)
lattice_inputs.append(fbs_calibrator)

# ############### restecg ###############
restecg_input = tf.keras.layers.Input(shape=[1], name='restecg')
model_inputs.append(restecg_input)
restecg_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=3,
    output_min=0.0,
    output_max=lattice_sizes[6] - 1.0,
    # Categorical monotonicity can be partial order.
    monotonicities=[(0, 1), (0, 2)],
    # Categorical calibration layer supports standard Keras regularizers.
    kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001),
    kernel_initializer='constant',
    name='restecg_calib',
)(
    restecg_input)
lattice_inputs.append(restecg_calibrator)

Luego creamos una capa de celosía para fusionar de forma no lineal las salidas de los calibradores.

Tenga en cuenta que debemos especificar la monotonicidad de la celosía para aumentar para las dimensiones requeridas. La composición con la dirección de la monotonicidad en la calibración dará como resultado la dirección correcta de monotonicidad de extremo a extremo. Esto incluye la monotonicidad parcial de la capa tfl.layers.CategoricalCalibration .

lattice = tfl.layers.Lattice(
    lattice_sizes=lattice_sizes,
    monotonicities=[
        'increasing', 'none', 'increasing', 'increasing', 'increasing',
        'increasing', 'increasing'
    ],
    output_min=0.0,
    output_max=1.0,
    name='lattice',
)(
    lattice_inputs)

Para agregar más flexibilidad al modelo, agregamos una capa de calibración de salida.

model_output = tfl.layers.PWLCalibration(
    input_keypoints=np.linspace(0.0, 1.0, 5),
    name='output_calib',
)(
    lattice)

Ahora podemos crear un modelo utilizando las entradas y salidas.

model = tf.keras.models.Model(
    inputs=model_inputs,
    outputs=model_output)
tf.keras.utils.plot_model(model, rankdir='LR')

png

El entrenamiento funciona igual que cualquier otro modelo de keras. Tenga en cuenta que, con nuestra configuración, las características de entrada se pasan como tensores separados.

feature_names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg']
features = np.split(
    training_data_df[feature_names].values.astype(np.float32),
    indices_or_sections=len(feature_names),
    axis=1)
target = training_data_df[['target']].values.astype(np.float32)

model.compile(
    loss=tf.keras.losses.mean_squared_error,
    optimizer=tf.keras.optimizers.Adagrad(LEARNING_RATE))
model.fit(
    features,
    target,
    batch_size=BATCH_SIZE,
    epochs=NUM_EPOCHS,
    validation_split=0.2,
    shuffle=False,
    verbose=0)

model.evaluate(features, target)
10/10 [==============================] - 0s 1ms/step - loss: 0.1590
0.15900751948356628