Sfruttare le funzionalità del contesto

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza l'origine su GitHub Scarica quaderno

Nell'esercitazione sulle funzionalità abbiamo incorporato più funzionalità oltre agli identificatori di utenti e filmati nei nostri modelli, ma non abbiamo esaminato se tali funzionalità migliorano la precisione del modello.

Molti fattori influiscono sull'utilità delle funzionalità oltre agli ID in un modello di raccomandazione:

  1. Importanza del contesto : se le preferenze dell'utente sono relativamente stabili nei contesti e nel tempo, le funzionalità del contesto potrebbero non fornire molti vantaggi. Se, tuttavia, le preferenze degli utenti sono altamente contestuali, l'aggiunta del contesto migliorerà notevolmente il modello. Ad esempio, il giorno della settimana può essere una caratteristica importante quando si decide se consigliare un breve clip o un film: gli utenti possono avere solo il tempo di guardare brevi contenuti durante la settimana, ma possono rilassarsi e godersi un lungometraggio durante il fine settimana . Allo stesso modo, i timestamp delle query possono svolgere un ruolo importante nella modellazione delle dinamiche di popolarità: un film può essere molto popolare nel momento della sua uscita, ma decade rapidamente in seguito. Al contrario, altri film potrebbero essere sempreverdi che vengono guardati felicemente più e più volte.
  2. Scarsità dei dati : l'utilizzo di funzionalità non ID può essere fondamentale se i dati sono sparsi. Con poche osservazioni disponibili per un dato utente o elemento, il modello potrebbe avere difficoltà a stimare una buona rappresentazione per utente o per elemento. Per creare un modello accurato, è necessario utilizzare altre funzionalità come categorie di articoli, descrizioni e immagini per aiutare il modello a generalizzare oltre i dati di addestramento. Ciò è particolarmente rilevante in situazioni di avvio a freddo , in cui sono disponibili dati relativamente pochi su alcuni elementi o utenti.

In questo tutorial, sperimenteremo l'utilizzo di funzionalità oltre ai titoli dei film e agli ID utente nel nostro modello MovieLens.

Preliminari

Prima importiamo i pacchetti necessari.

pip install -q tensorflow-recommenders
pip install -q --upgrade tensorflow-datasets
import os
import tempfile

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds

import tensorflow_recommenders as tfrs

Seguiamo il tutorial sulla messa in evidenza e manteniamo le funzionalità di ID utente, timestamp e titolo del film.

ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")

ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"],
    "timestamp": x["timestamp"],
})
movies = movies.map(lambda x: x["movie_title"])

Facciamo anche alcune pulizie per preparare i vocabolari delle caratteristiche.

timestamps = np.concatenate(list(ratings.map(lambda x: x["timestamp"]).batch(100)))

max_timestamp = timestamps.max()
min_timestamp = timestamps.min()

timestamp_buckets = np.linspace(
    min_timestamp, max_timestamp, num=1000,
)

unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000))))
unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map(
    lambda x: x["user_id"]))))

Definizione del modello

Modello di query

Iniziamo con il modello utente definito nel tutorial sulla funzionalità come primo livello del nostro modello, incaricato di convertire esempi di input grezzi in incorporamenti di funzionalità. Tuttavia, lo modifichiamo leggermente per consentirci di attivare o disattivare le funzioni di timestamp. Ciò ci consentirà di dimostrare più facilmente l'effetto che le funzionalità di timestamp hanno sul modello. Nel codice seguente, il parametro use_timestamps ci dà il controllo sull'utilizzo delle funzionalità di timestamp.

class UserModel(tf.keras.Model):

  def __init__(self, use_timestamps):
    super().__init__()

    self._use_timestamps = use_timestamps

    self.user_embedding = tf.keras.Sequential([
        tf.keras.layers.StringLookup(
            vocabulary=unique_user_ids, mask_token=None),
        tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
    ])

    if use_timestamps:
      self.timestamp_embedding = tf.keras.Sequential([
          tf.keras.layers.Discretization(timestamp_buckets.tolist()),
          tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
      ])
      self.normalized_timestamp = tf.keras.layers.Normalization(
          axis=None
      )

      self.normalized_timestamp.adapt(timestamps)

  def call(self, inputs):
    if not self._use_timestamps:
      return self.user_embedding(inputs["user_id"])

    return tf.concat([
        self.user_embedding(inputs["user_id"]),
        self.timestamp_embedding(inputs["timestamp"]),
        tf.reshape(self.normalized_timestamp(inputs["timestamp"]), (-1, 1)),
    ], axis=1)

Tieni presente che l'uso delle funzionalità di timestamp in questo tutorial interagisce con la nostra scelta della suddivisione del test di formazione in un modo indesiderato. Poiché abbiamo suddiviso i nostri dati in modo casuale anziché cronologico (per garantire che gli eventi che appartengono al set di dati di test avvengano più tardi rispetto a quelli nel set di addestramento), il nostro modello può effettivamente imparare dal futuro. Questo non è realistico: dopotutto, non possiamo addestrare un modello oggi sui dati di domani.

Ciò significa che l'aggiunta di funzionalità temporali al modello consente di apprendere i modelli di interazione futuri . Lo facciamo solo a scopo illustrativo: il set di dati MovieLens stesso è molto denso e, a differenza di molti set di dati del mondo reale, non beneficia molto di funzionalità oltre agli ID utente e ai titoli dei film.

A parte questo avvertimento, i modelli del mondo reale potrebbero trarre vantaggio da altre funzionalità basate sul tempo come l'ora del giorno o il giorno della settimana, soprattutto se i dati hanno forti modelli stagionali.

Modello candidato

Per semplicità, manterremo fisso il modello candidato. Ancora una volta, lo copiamo dal tutorial di funzionalità:

class MovieModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    max_tokens = 10_000

    self.title_embedding = tf.keras.Sequential([
      tf.keras.layers.StringLookup(
          vocabulary=unique_movie_titles, mask_token=None),
      tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
    ])

    self.title_vectorizer = tf.keras.layers.TextVectorization(
        max_tokens=max_tokens)

    self.title_text_embedding = tf.keras.Sequential([
      self.title_vectorizer,
      tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
      tf.keras.layers.GlobalAveragePooling1D(),
    ])

    self.title_vectorizer.adapt(movies)

  def call(self, titles):
    return tf.concat([
        self.title_embedding(titles),
        self.title_text_embedding(titles),
    ], axis=1)

Modello combinato

Con UserModel e MovieModel definiti, possiamo mettere insieme un modello combinato e implementare la nostra logica di perdita e metrica.

Qui stiamo costruendo un modello di recupero. Per un aggiornamento su come funziona, vedere l'esercitazione sul recupero di base .

Si noti che è inoltre necessario assicurarsi che il modello di query e il modello candidato restituiscano incorporamenti di dimensioni compatibili. Poiché varieremo le loro dimensioni aggiungendo più funzionalità, il modo più semplice per ottenere ciò è utilizzare uno strato di proiezione denso dopo ogni modello:

class MovielensModel(tfrs.models.Model):

  def __init__(self, use_timestamps):
    super().__init__()
    self.query_model = tf.keras.Sequential([
      UserModel(use_timestamps),
      tf.keras.layers.Dense(32)
    ])
    self.candidate_model = tf.keras.Sequential([
      MovieModel(),
      tf.keras.layers.Dense(32)
    ])
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.candidate_model),
        ),
    )

  def compute_loss(self, features, training=False):
    # We only pass the user id and timestamp features into the query model. This
    # is to ensure that the training inputs would have the same keys as the
    # query inputs. Otherwise the discrepancy in input structure would cause an
    # error when loading the query model after saving it.
    query_embeddings = self.query_model({
        "user_id": features["user_id"],
        "timestamp": features["timestamp"],
    })
    movie_embeddings = self.candidate_model(features["movie_title"])

    return self.task(query_embeddings, movie_embeddings)

Esperimenti

Prepara i dati

Per prima cosa dividiamo i dati in un set di addestramento e un set di test.

tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

cached_train = train.shuffle(100_000).batch(2048)
cached_test = test.batch(4096).cache()

Baseline: nessuna funzionalità di timestamp

Siamo pronti per provare il nostro primo modello: iniziamo senza utilizzare le funzioni di timestamp per stabilire la nostra linea di base.

model = MovielensModel(use_timestamps=False)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

model.fit(cached_train, epochs=3)

train_accuracy = model.evaluate(
    cached_train, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
test_accuracy = model.evaluate(
    cached_test, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]

print(f"Top-100 accuracy (train): {train_accuracy:.2f}.")
print(f"Top-100 accuracy (test): {test_accuracy:.2f}.")
Epoch 1/3
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
40/40 [==============================] - 10s 169ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0092 - factorized_top_k/top_5_categorical_accuracy: 0.0172 - factorized_top_k/top_10_categorical_accuracy: 0.0256 - factorized_top_k/top_50_categorical_accuracy: 0.0824 - factorized_top_k/top_100_categorical_accuracy: 0.1473 - loss: 14579.4628 - regularization_loss: 0.0000e+00 - total_loss: 14579.4628
Epoch 2/3
40/40 [==============================] - 9s 173ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0020 - factorized_top_k/top_5_categorical_accuracy: 0.0126 - factorized_top_k/top_10_categorical_accuracy: 0.0251 - factorized_top_k/top_50_categorical_accuracy: 0.1129 - factorized_top_k/top_100_categorical_accuracy: 0.2133 - loss: 14136.2137 - regularization_loss: 0.0000e+00 - total_loss: 14136.2137
Epoch 3/3
40/40 [==============================] - 9s 174ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0021 - factorized_top_k/top_5_categorical_accuracy: 0.0155 - factorized_top_k/top_10_categorical_accuracy: 0.0307 - factorized_top_k/top_50_categorical_accuracy: 0.1389 - factorized_top_k/top_100_categorical_accuracy: 0.2535 - loss: 13939.9265 - regularization_loss: 0.0000e+00 - total_loss: 13939.9265
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
40/40 [==============================] - 10s 189ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0036 - factorized_top_k/top_5_categorical_accuracy: 0.0226 - factorized_top_k/top_10_categorical_accuracy: 0.0427 - factorized_top_k/top_50_categorical_accuracy: 0.1729 - factorized_top_k/top_100_categorical_accuracy: 0.2944 - loss: 13711.3802 - regularization_loss: 0.0000e+00 - total_loss: 13711.3802
5/5 [==============================] - 3s 267ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0010 - factorized_top_k/top_5_categorical_accuracy: 0.0078 - factorized_top_k/top_10_categorical_accuracy: 0.0184 - factorized_top_k/top_50_categorical_accuracy: 0.1051 - factorized_top_k/top_100_categorical_accuracy: 0.2126 - loss: 30995.8988 - regularization_loss: 0.0000e+00 - total_loss: 30995.8988
Top-100 accuracy (train): 0.29.
Top-100 accuracy (test): 0.21.

Questo ci dà una precisione di base nella top-100 di circa 0,2.

Catturare la dinamica del tempo con le caratteristiche del tempo

Il risultato cambia se aggiungiamo funzioni temporali?

model = MovielensModel(use_timestamps=True)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

model.fit(cached_train, epochs=3)

train_accuracy = model.evaluate(
    cached_train, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
test_accuracy = model.evaluate(
    cached_test, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]

print(f"Top-100 accuracy (train): {train_accuracy:.2f}.")
print(f"Top-100 accuracy (test): {test_accuracy:.2f}.")
Epoch 1/3
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
40/40 [==============================] - 10s 175ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0057 - factorized_top_k/top_5_categorical_accuracy: 0.0148 - factorized_top_k/top_10_categorical_accuracy: 0.0238 - factorized_top_k/top_50_categorical_accuracy: 0.0812 - factorized_top_k/top_100_categorical_accuracy: 0.1487 - loss: 14606.0927 - regularization_loss: 0.0000e+00 - total_loss: 14606.0927
Epoch 2/3
40/40 [==============================] - 9s 176ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0026 - factorized_top_k/top_5_categorical_accuracy: 0.0153 - factorized_top_k/top_10_categorical_accuracy: 0.0304 - factorized_top_k/top_50_categorical_accuracy: 0.1375 - factorized_top_k/top_100_categorical_accuracy: 0.2512 - loss: 13958.5635 - regularization_loss: 0.0000e+00 - total_loss: 13958.5635
Epoch 3/3
40/40 [==============================] - 9s 177ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0026 - factorized_top_k/top_5_categorical_accuracy: 0.0189 - factorized_top_k/top_10_categorical_accuracy: 0.0393 - factorized_top_k/top_50_categorical_accuracy: 0.1713 - factorized_top_k/top_100_categorical_accuracy: 0.3015 - loss: 13696.8511 - regularization_loss: 0.0000e+00 - total_loss: 13696.8511
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
WARNING:tensorflow:Layers in a Sequential model should only have a single input tensor. Received: inputs={'user_id': <tf.Tensor 'IteratorGetNext:2' shape=(None,) dtype=string>, 'timestamp': <tf.Tensor 'IteratorGetNext:1' shape=(None,) dtype=int64>}. Consider rewriting this model with the Functional API.
40/40 [==============================] - 9s 172ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0050 - factorized_top_k/top_5_categorical_accuracy: 0.0323 - factorized_top_k/top_10_categorical_accuracy: 0.0606 - factorized_top_k/top_50_categorical_accuracy: 0.2254 - factorized_top_k/top_100_categorical_accuracy: 0.3637 - loss: 13382.7869 - regularization_loss: 0.0000e+00 - total_loss: 13382.7869
5/5 [==============================] - 1s 237ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0012 - factorized_top_k/top_5_categorical_accuracy: 0.0097 - factorized_top_k/top_10_categorical_accuracy: 0.0214 - factorized_top_k/top_50_categorical_accuracy: 0.1259 - factorized_top_k/top_100_categorical_accuracy: 0.2468 - loss: 30699.8529 - regularization_loss: 0.0000e+00 - total_loss: 30699.8529
Top-100 accuracy (train): 0.36.
Top-100 accuracy (test): 0.25.

Questo è un po' meglio: non solo l'accuratezza dell'allenamento è molto più alta, ma anche l'accuratezza del test è notevolmente migliorata.

Prossimi passi

Questo tutorial mostra che anche i modelli semplici possono diventare più accurati quando incorporano più funzionalità. Tuttavia, per ottenere il massimo dalle tue funzionalità è spesso necessario costruire modelli più grandi e più profondi. Dai un'occhiata al tutorial sul recupero approfondito per esplorarlo in modo più dettagliato.