TensorFlow Serving for model deployment in production

# Download the TensorFlow Serving Docker image and repo
docker pull tensorflow/serving
git clone https://github.com/tensorflow/serving # Location of demo models TESTDATA="$(pwd)/serving/tensorflow_serving/servables/tensorflow/testdata" # Start TensorFlow Serving container and open the REST API port docker run -t --rm -p 8501:8501 \ -v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" \ -e MODEL_NAME=half_plus_two \ tensorflow/serving & # Query the model using the predict API curl -d '{"instances": [1.0, 2.0, 5.0]}' \ -X POST http://localhost:8501/v1/models/half_plus_two:predict
# Returns => { "predictions": [2.5, 3.0, 4.5] }
TensorFlow Serving is a flexible, high-performance serving system for machine learning models, designed for production environments. TensorFlow Serving makes it easy to deploy new algorithms and experiments, while keeping the same server architecture and APIs. TensorFlow Serving provides out-of-the-box integration with TensorFlow models, but can be easily extended to serve other types of models and data.