Yardım Kaggle üzerinde TensorFlow ile Büyük Bariyer Resifi korumak Meydan Üyelik

RNN ile metin oluşturma

TensorFlow.org'da görüntüleyin Google Colab'da çalıştırın Kaynağı GitHub'da görüntüleyin Not defterini indir

Bu öğretici, karakter tabanlı bir RNN kullanarak nasıl metin oluşturulacağını gösterir. Sen Andrej karpathy en dan Shakespeare'in yazılı bir veri kümesi ile çalışacaktır Tekrarlayan Sinir Ağları mantıksız etkinliği . Bu verilerden ("Shakespear") bir dizi karakter verildiğinde, dizideki bir sonraki karakteri ("e") tahmin etmek için bir model eğitin. Model tekrar tekrar çağrılarak daha uzun metin dizileri oluşturulabilir.

Bu öğretici kullanılarak uygulanan çalıştırılabilir kodu tf.keras ve istekli yürütme . Aşağıdaki, bu öğreticideki modelin 30 dönem için eğitildiği ve "Q" istemiyle başladığı örnek çıktıdır:

QUEENE:
I had thought thou hadst a Roman; for the oracle,
Thus by All bids the man against the word,
Which are so weak of care, by old care done;
Your children were in your holy love,
And the precipitation through the bleeding throne.

BISHOP OF ELY:
Marry, and will, my lord, to weep in such a one were prettiest;
Yet now I was adopted heir
Of the world's lamentable day,
To watch the next way with his father with his face?

ESCALUS:
The cause why then we are all resolved more sons.

VOLUMNIA:
O, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, it is no sin it should be dead,
And love and pale as any will to that word.

QUEEN ELIZABETH:
But how long have I heard the soul for this world,
And show his hands of life be proved to stand.

PETRUCHIO:
I say he look'd on, if I must be content
To stay him from the fatal of our country's bliss.
His lordship pluck'd from this sentence then for prey,
And then let us twain, being the moon,
were she such a case as fills m

Cümlelerin bazıları dilbilgisel olsa da, çoğu mantıklı değil. Model, kelimelerin anlamlarını öğrenmedi, ancak şunu düşünün:

  • Model karakter tabanlıdır. Eğitim başladığında, model İngilizce bir kelimenin nasıl yazılacağını veya kelimelerin bir metin birimi olduğunu bile bilmiyordu.

  • Çıktının yapısı bir oyuna benzer; metin blokları genellikle veri kümesine benzer şekilde tümü büyük harflerle bir konuşmacı adıyla başlar.

  • Aşağıda gösterildiği gibi, model küçük metin grupları (her biri 100 karakter) üzerinde eğitilmiştir ve yine de tutarlı bir yapıya sahip daha uzun bir metin dizisi oluşturabilmektedir.

Kurmak

TensorFlow ve diğer kitaplıkları içe aktarın

import tensorflow as tf

import numpy as np
import os
import time

Shakespeare veri kümesini indirin

Bu kodu kendi verileriniz üzerinde çalıştırmak için aşağıdaki satırı değiştirin.

path_to_file = tf.keras.utils.get_file('shakespeare.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt')
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt
1122304/1115394 [==============================] - 0s 0us/step
1130496/1115394 [==============================] - 0s 0us/step

verileri oku

Önce metne bakın:

# Read, then decode for py2 compat.
text = open(path_to_file, 'rb').read().decode(encoding='utf-8')
# length of text is the number of characters in it
print(f'Length of text: {len(text)} characters')
Length of text: 1115394 characters
# Take a look at the first 250 characters in text
print(text[:250])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

All:
Resolved. resolved.

First Citizen:
First, you know Caius Marcius is chief enemy to the people.
# The unique characters in the file
vocab = sorted(set(text))
print(f'{len(vocab)} unique characters')
65 unique characters

Metni işleyin

Metni vektörleştir

Eğitimden önce, dizeleri sayısal bir temsile dönüştürmeniz gerekir.

tf.keras.layers.StringLookup tabaka sayısal kimliğine her bir karakteri dönüştürebilir. Sadece metnin önce belirteçlere bölünmesi gerekiyor.

example_texts = ['abcdefg', 'xyz']

chars = tf.strings.unicode_split(example_texts, input_encoding='UTF-8')
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

Şimdi oluşturmak tf.keras.layers.StringLookup katmanı:

ids_from_chars = tf.keras.layers.StringLookup(
    vocabulary=list(vocab), mask_token=None)

Belirteçlerden karakter kimliklerine dönüştürür:

ids = ids_from_chars(chars)
ids
<tf.RaggedTensor [[40, 41, 42, 43, 44, 45, 46], [63, 64, 65]]>

Bu öğreticinin amacı metin oluşturmak olduğundan, bu gösterimi tersine çevirmek ve ondan insan tarafından okunabilir dizeleri kurtarmak da önemli olacaktır. Bu kullanabilirsiniz İçin tf.keras.layers.StringLookup(..., invert=True) .

chars_from_ids = tf.keras.layers.StringLookup(
    vocabulary=ids_from_chars.get_vocabulary(), invert=True, mask_token=None)

Bu katman olarak kimlikleri vektörlerin karakterleri ve döner onları kurtarır tf.RaggedTensor karakter:

chars = chars_from_ids(ids)
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

Sen edebilirsiniz tf.strings.reduce_join dizeleri geri karakterleri katılmak.

tf.strings.reduce_join(chars, axis=-1).numpy()
array([b'abcdefg', b'xyz'], dtype=object)
def text_from_ids(ids):
  return tf.strings.reduce_join(chars_from_ids(ids), axis=-1)

tahmin görevi

Bir karakter veya bir dizi karakter verildiğinde, bir sonraki en olası karakter hangisidir? Modeli gerçekleştirmesi için eğittiğiniz görev budur. Modelin girdisi bir karakter dizisi olacaktır ve modeli her zaman adımında aşağıdaki karakter olan çıktıyı tahmin etmek için eğitirsiniz.

RNN'ler, bu ana kadar hesaplanan tüm karakterler göz önüne alındığında, daha önce görülen öğelere bağlı bir dahili durumu korudukları için, bir sonraki karakter nedir?

Eğitim örnekleri ve hedefleri oluşturun

Ardından metni örnek dizilere bölün. Her giriş sekansı içerir seq_length metin karakterlerini.

Her giriş dizisi için, bir karakter sağa kaydırılanlar dışında, karşılık gelen hedefler aynı uzunlukta metin içerir.

Yani parçaları metin kırmak seq_length+1 . Örneğin, demek seq_length 4 ve bizim metin "Merhaba" dir. Giriş dizisi "Cehennem" ve hedef dizi "ello" olacaktır.

Bu birinci kullanımını yapmak için tf.data.Dataset.from_tensor_slices karakter endekslerinin bir akışı içine metin vektör dönüştürme işlevi görür.

all_ids = ids_from_chars(tf.strings.unicode_split(text, 'UTF-8'))
all_ids
<tf.Tensor: shape=(1115394,), dtype=int64, numpy=array([19, 48, 57, ..., 46,  9,  1])>
ids_dataset = tf.data.Dataset.from_tensor_slices(all_ids)
for ids in ids_dataset.take(10):
    print(chars_from_ids(ids).numpy().decode('utf-8'))
F
i
r
s
t
 
C
i
t
i
seq_length = 100
examples_per_epoch = len(text)//(seq_length+1)

batch yöntemi kolayca istenilen boyutta dizilerine bu bireysel karakterleri dönüştürmek sağlar.

sequences = ids_dataset.batch(seq_length+1, drop_remainder=True)

for seq in sequences.take(1):
  print(chars_from_ids(seq))
tf.Tensor(
[b'F' b'i' b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':'
 b'\n' b'B' b'e' b'f' b'o' b'r' b'e' b' ' b'w' b'e' b' ' b'p' b'r' b'o'
 b'c' b'e' b'e' b'd' b' ' b'a' b'n' b'y' b' ' b'f' b'u' b'r' b't' b'h'
 b'e' b'r' b',' b' ' b'h' b'e' b'a' b'r' b' ' b'm' b'e' b' ' b's' b'p'
 b'e' b'a' b'k' b'.' b'\n' b'\n' b'A' b'l' b'l' b':' b'\n' b'S' b'p' b'e'
 b'a' b'k' b',' b' ' b's' b'p' b'e' b'a' b'k' b'.' b'\n' b'\n' b'F' b'i'
 b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':' b'\n' b'Y'
 b'o' b'u' b' '], shape=(101,), dtype=string)
2022-01-14 12:12:45.336250: W tensorflow/core/data/root_dataset.cc:200] Optimization loop failed: CANCELLED: Operation was cancelled

Belirteçleri tekrar dizgelerde birleştirirseniz, bunun ne yaptığını görmek daha kolay:

for seq in sequences.take(5):
  print(text_from_ids(seq).numpy())
b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '
b'are all resolved rather to die than to famish?\n\nAll:\nResolved. resolved.\n\nFirst Citizen:\nFirst, you k'
b"now Caius Marcius is chief enemy to the people.\n\nAll:\nWe know't, we know't.\n\nFirst Citizen:\nLet us ki"
b"ll him, and we'll have corn at our own price.\nIs't a verdict?\n\nAll:\nNo more talking on't; let it be d"
b'one: away, away!\n\nSecond Citizen:\nOne word, good citizens.\n\nFirst Citizen:\nWe are accounted poor citi'

Eğitim için, bir veri kümesi gerekir (input, label) çiftleri. Burada input ve label sekanslarıdır. Her zaman adımında giriş geçerli karakterdir ve etiket bir sonraki karakterdir.

Bir diziyi girdi olarak alan, çoğaltan ve her zaman adımı için girdiyi ve etiketi hizalamak için değiştiren bir işlev:

def split_input_target(sequence):
    input_text = sequence[:-1]
    target_text = sequence[1:]
    return input_text, target_text
split_input_target(list("Tensorflow"))
(['T', 'e', 'n', 's', 'o', 'r', 'f', 'l', 'o'],
 ['e', 'n', 's', 'o', 'r', 'f', 'l', 'o', 'w'])
dataset = sequences.map(split_input_target)
for input_example, target_example in dataset.take(1):
    print("Input :", text_from_ids(input_example).numpy())
    print("Target:", text_from_ids(target_example).numpy())
Input : b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou'
Target: b'irst Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '

Eğitim grupları oluşturun

Kullanılan tf.data yönetilebilir dizileri metin bölmek. Ancak bu verileri modele beslemeden önce, verileri karıştırmanız ve yığınlar halinde paketlemeniz gerekir.

# Batch size
BATCH_SIZE = 64

# Buffer size to shuffle the dataset
# (TF data is designed to work with possibly infinite sequences,
# so it doesn't attempt to shuffle the entire sequence in memory. Instead,
# it maintains a buffer in which it shuffles elements).
BUFFER_SIZE = 10000

dataset = (
    dataset
    .shuffle(BUFFER_SIZE)
    .batch(BATCH_SIZE, drop_remainder=True)
    .prefetch(tf.data.experimental.AUTOTUNE))

dataset
<PrefetchDataset element_spec=(TensorSpec(shape=(64, 100), dtype=tf.int64, name=None), TensorSpec(shape=(64, 100), dtype=tf.int64, name=None))>

Modeli Oluştur

Bu bölüm, bir şekilde bir model tanımlar keras.Model alt sınıf (ayrıntılar için bakınız sınıflara aracılığıyla yeni Katmanlar ve modelleri yapma ).

Bu modelin üç katmanı vardır:

  • tf.keras.layers.Embedding : giriş katmanı. İle bir vektöre her karakter kimliğini eşler bir trainable arama tablosu embedding_dim boyutları;
  • tf.keras.layers.GRU : boyutu RNN A tipi units=rnn_units (Ayrıca burada LSTM katmanı kullanabilir.)
  • tf.keras.layers.Dense : çıktı katmanı ile vocab_size çıkışları. Sözlükteki her karakter için bir logit çıktısı verir. Bunlar, modele göre her karakterin log-olasılığıdır.
# Length of the vocabulary in chars
vocab_size = len(vocab)

# The embedding dimension
embedding_dim = 256

# Number of RNN units
rnn_units = 1024
class MyModel(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, rnn_units):
    super().__init__(self)
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(rnn_units,
                                   return_sequences=True,
                                   return_state=True)
    self.dense = tf.keras.layers.Dense(vocab_size)

  def call(self, inputs, states=None, return_state=False, training=False):
    x = inputs
    x = self.embedding(x, training=training)
    if states is None:
      states = self.gru.get_initial_state(x)
    x, states = self.gru(x, initial_state=states, training=training)
    x = self.dense(x, training=training)

    if return_state:
      return x, states
    else:
      return x
model = MyModel(
    # Be sure the vocabulary size matches the `StringLookup` layers.
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)

Model, her karakter için gömmeyi arar, gömme girdi olarak bir kez GRU'yu çalıştırır ve bir sonraki karakterin log-olasılığını tahmin eden logitler oluşturmak için yoğun katmanı uygular:

Modelden geçen verilerin bir çizimi

modeli deneyin

Şimdi beklendiği gibi davrandığını görmek için modeli çalıştırın.

İlk önce çıktının şeklini kontrol edin:

for input_example_batch, target_example_batch in dataset.take(1):
    example_batch_predictions = model(input_example_batch)
    print(example_batch_predictions.shape, "# (batch_size, sequence_length, vocab_size)")
(64, 100, 66) # (batch_size, sequence_length, vocab_size)

Yukarıdaki örnekte giriş dizi uzunluğu olan 100 ama model, herhangi bir uzunlukta girdilerine çalıştırılabilir:

model.summary()
Model: "my_model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 embedding (Embedding)       multiple                  16896     
                                                                 
 gru (GRU)                   multiple                  3938304   
                                                                 
 dense (Dense)               multiple                  67650     
                                                                 
=================================================================
Total params: 4,022,850
Trainable params: 4,022,850
Non-trainable params: 0
_________________________________________________________________

Modelden gerçek tahminler elde etmek için, gerçek karakter indekslerini elde etmek için çıktı dağılımından örneklemeniz gerekir. Bu dağılım, karakter sözlüğü üzerindeki logitlerle tanımlanır.

Partideki ilk örnek için deneyin:

sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)
sampled_indices = tf.squeeze(sampled_indices, axis=-1).numpy()

Bu bize her zaman adımında bir sonraki karakter indeksinin bir tahminini verir:

sampled_indices
array([ 3, 64, 58, 50, 52, 54,  5, 65, 44, 52, 11, 17, 16, 22, 62, 14, 19,
       26, 63,  2, 39, 19, 21, 14, 39, 46, 26, 53,  4, 16, 49, 43, 15, 53,
       31, 45,  2,  9, 43, 53,  6,  0, 43, 30, 24,  2, 35, 22, 23,  3, 17,
       15, 10, 30, 42, 48, 22,  1, 27, 52, 36, 51, 51, 43, 65, 39, 43, 38,
       39,  0,  2, 56, 49, 48, 31, 42, 51, 48,  7, 24, 33, 56, 58, 31, 51,
       61, 59, 61,  3, 65, 44, 14, 34, 30, 44, 27, 47, 18, 42, 15])

Bu eğitimsiz model tarafından tahmin edilen metni görmek için bunların kodunu çözün:

print("Input:\n", text_from_ids(input_example_batch[0]).numpy())
print()
print("Next Char Predictions:\n", text_from_ids(sampled_indices).numpy())
Input:
 b'genet.\nEdward for Edward pays a dying debt.\n\nQUEEN ELIZABETH:\nWilt thou, O God, fly from such gentle'

Next Char Predictions:
 b"!yskmo&zem:DCIwAFMx ZFHAZgMn$CjdBnRf .dn'[UNK]dQK VIJ!DB3QciI\nNmWlldzZdYZ[UNK] qjiRcli,KTqsRlvtv!zeAUQeNhEcB"

Modeli eğit

Bu noktada problem standart bir sınıflandırma problemi olarak ele alınabilir. Önceki RNN durumu ve bu adımdaki girdi göz önüne alındığında, bir sonraki karakterin sınıfını tahmin edin.

Bir optimize edici ve bir kayıp işlevi ekleyin

Standart tf.keras.losses.sparse_categorical_crossentropy bu tahminlerin son boyutu boyunca uygulanır çünkü kayıp fonksiyonu bu durumda çalışır.

Modeliniz logits döndürür olduğundan, ayarlamanız gerekir from_logits bayrağı.

loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
mean_loss = example_batch_loss.numpy().mean()
print("Prediction shape: ", example_batch_predictions.shape, " # (batch_size, sequence_length, vocab_size)")
print("Mean loss:        ", mean_loss)
Prediction shape:  (64, 100, 66)  # (batch_size, sequence_length, vocab_size)
Mean loss:         4.1900826

Yeni başlatılan bir model kendinden çok emin olmamalıdır, çıktı logitlerinin tümü benzer büyüklüklere sahip olmalıdır. Bunu doğrulamak için ortalama kaybın üstel değerinin yaklaşık olarak kelime boyutuna eşit olduğunu kontrol edebilirsiniz. Çok daha yüksek bir kayıp, modelin yanlış cevaplarından emin olduğu ve kötü bir şekilde başlatıldığı anlamına gelir:

tf.exp(mean_loss).numpy()
66.028244

Kullanarak eğitim prosedürü yapılandırma tf.keras.Model.compile yöntemi. Kullanım tf.keras.optimizers.Adam varsayılan argümanlar ve zarar fonksiyonu ile.

model.compile(optimizer='adam', loss=loss)

Kontrol noktalarını yapılandır

Bir kullan tf.keras.callbacks.ModelCheckpoint kontrol noktaları eğitim sırasında kaydedilmiş olduğundan emin olmak için:

# Directory where the checkpoints will be saved
checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_prefix,
    save_weights_only=True)

Eğitimi yürütün

Eğitim süresini makul tutmak için modeli eğitmek için 10 dönem kullanın. Colab'de daha hızlı eğitim için çalışma zamanını GPU olarak ayarlayın.

EPOCHS = 20
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])
Epoch 1/20
172/172 [==============================] - 7s 25ms/step - loss: 2.7056
Epoch 2/20
172/172 [==============================] - 5s 24ms/step - loss: 1.9838
Epoch 3/20
172/172 [==============================] - 5s 24ms/step - loss: 1.7074
Epoch 4/20
172/172 [==============================] - 5s 24ms/step - loss: 1.5489
Epoch 5/20
172/172 [==============================] - 5s 24ms/step - loss: 1.4498
Epoch 6/20
172/172 [==============================] - 5s 24ms/step - loss: 1.3825
Epoch 7/20
172/172 [==============================] - 5s 24ms/step - loss: 1.3300
Epoch 8/20
172/172 [==============================] - 5s 24ms/step - loss: 1.2846
Epoch 9/20
172/172 [==============================] - 5s 24ms/step - loss: 1.2441
Epoch 10/20
172/172 [==============================] - 5s 24ms/step - loss: 1.2030
Epoch 11/20
172/172 [==============================] - 5s 24ms/step - loss: 1.1641
Epoch 12/20
172/172 [==============================] - 5s 24ms/step - loss: 1.1223
Epoch 13/20
172/172 [==============================] - 6s 24ms/step - loss: 1.0786
Epoch 14/20
172/172 [==============================] - 5s 24ms/step - loss: 1.0316
Epoch 15/20
172/172 [==============================] - 6s 24ms/step - loss: 0.9826
Epoch 16/20
172/172 [==============================] - 5s 24ms/step - loss: 0.9326
Epoch 17/20
172/172 [==============================] - 5s 24ms/step - loss: 0.8790
Epoch 18/20
172/172 [==============================] - 5s 24ms/step - loss: 0.8260
Epoch 19/20
172/172 [==============================] - 5s 24ms/step - loss: 0.7759
Epoch 20/20
172/172 [==============================] - 5s 24ms/step - loss: 0.7256

Metin oluştur

Bu modelle metin oluşturmanın en basit yolu, onu bir döngüde çalıştırmak ve onu yürütürken modelin dahili durumunu takip etmektir.

Metin oluşturmak için modelin çıktısı girdiye geri beslenir

Modeli her aradığınızda, bir metin ve dahili bir duruma geçersiniz. Model, bir sonraki karakter ve onun yeni durumu için bir tahmin döndürür. Tahmini iletin ve metin oluşturmaya devam etmek için durumu tekrar girin.

Aşağıdakiler tek adımlı bir tahmin yapar:

class OneStep(tf.keras.Model):
  def __init__(self, model, chars_from_ids, ids_from_chars, temperature=1.0):
    super().__init__()
    self.temperature = temperature
    self.model = model
    self.chars_from_ids = chars_from_ids
    self.ids_from_chars = ids_from_chars

    # Create a mask to prevent "[UNK]" from being generated.
    skip_ids = self.ids_from_chars(['[UNK]'])[:, None]
    sparse_mask = tf.SparseTensor(
        # Put a -inf at each bad index.
        values=[-float('inf')]*len(skip_ids),
        indices=skip_ids,
        # Match the shape to the vocabulary
        dense_shape=[len(ids_from_chars.get_vocabulary())])
    self.prediction_mask = tf.sparse.to_dense(sparse_mask)

  @tf.function
  def generate_one_step(self, inputs, states=None):
    # Convert strings to token IDs.
    input_chars = tf.strings.unicode_split(inputs, 'UTF-8')
    input_ids = self.ids_from_chars(input_chars).to_tensor()

    # Run the model.
    # predicted_logits.shape is [batch, char, next_char_logits]
    predicted_logits, states = self.model(inputs=input_ids, states=states,
                                          return_state=True)
    # Only use the last prediction.
    predicted_logits = predicted_logits[:, -1, :]
    predicted_logits = predicted_logits/self.temperature
    # Apply the prediction mask: prevent "[UNK]" from being generated.
    predicted_logits = predicted_logits + self.prediction_mask

    # Sample the output logits to generate token IDs.
    predicted_ids = tf.random.categorical(predicted_logits, num_samples=1)
    predicted_ids = tf.squeeze(predicted_ids, axis=-1)

    # Convert from token ids to characters
    predicted_chars = self.chars_from_ids(predicted_ids)

    # Return the characters and model state.
    return predicted_chars, states
one_step_model = OneStep(model, chars_from_ids, ids_from_chars)

Biraz metin oluşturmak için bir döngüde çalıştırın. Oluşturulan metne baktığınızda, modelin ne zaman büyük harf kullanacağını, paragraflar oluşturacağını ve Shakespeare benzeri bir yazma kelimesini taklit ettiğini göreceksiniz. Az sayıda eğitim dönemi ile henüz tutarlı cümleler kurmayı öğrenememiştir.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result[0].numpy().decode('utf-8'), '\n\n' + '_'*80)
print('\nRun time:', end - start)
ROMEO:
But I do lose his land, and get a summer ruin.

SICINIUS:
That's your beave.

BIONDELLO:
Ha? Rucher that dost thou art again to provide,
In thy right injurious princely number.
Dear resembrance at this Antium, York as a man
That 'leven your steel pedlars mounted.
Sad, he hath privilege with the causer.

NORTHUMBERLAND:
The lords o'clock my sovereign slay;
You say do so young master. Come, let's go
Avoid with brittle fifteen years; therefore I wail, for he
is your before, sir, I will deep thing and rich my steal father.
Then, till he be that must be done: Henry, such a peast,
Our doings were free,' quoth he that Clifford say so himself.
If I be here to make thee jardon, 'milis,
And cannot but better wed this withded; but,
I'll pawn the platts, to France Henry's forward come?

BENVOLIO:
Twice one defend,
Or wail not be; this last of endless creatures
We may title out above to due, a feast.

Tailor:
Such a more mortal to your death
Taking this forward injury, that did, but hears
Bearing  

________________________________________________________________________________

Run time: 2.630192518234253

Eğer sonuçlarını geliştirmek için yapabileceğiniz en kolay şey daha uzun (deneyin için eğitmek EPOCHS = 30 ).

Ayrıca farklı bir başlangıç ​​dizisi deneyebilir, modelin doğruluğunu artırmak için başka bir RNN katmanı eklemeyi deneyebilir veya daha fazla veya daha az rastgele tahminler oluşturmak için sıcaklık parametresini ayarlayabilirsiniz.

Eğer modeli daha hızlı metin oluşturmak istiyorsanız yapabileceğiniz en kolay şey toplu metin kuşaktır. Aşağıdaki örnekte, model, yukarıdaki 1'i üretmek için harcadığı süre ile yaklaşık olarak aynı zamanda 5 çıktı üretir.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result, '\n\n' + '_'*80)
print('\nRun time:', end - start)
tf.Tensor(
[b"ROMEO:\nThe Duke of Norfolk, when ang low-hingded is a\ndangerous tongue; thou hast never in our tale\n'side, and talk of wine and me. Leave me, and\nI wish thy breathing: he hath had no poison\nMust call Edward's faces, and that sends the roan drowning tears.\nThe sum our lovers bride, or bid me speak.\n\nBUCKINGHAM:\nWelcome, great bring our contents.\n\nCAMILLO:\nThe kings of Coriolanus!\n\nVOLUMNIA:\nAnd, by a dish, sort words in person.\n\nBRUTUS:\nGo ask.\n\nMARIANA:\nThen with a grains what thine eyes say\nWill you done free speech lies?\n\nLADY CAPULET:\nI know not what to be proud?\nFow, I do bit speak a worthy feast; but tweit me\nForbid-hearken more deeds do that presently to't in no\nmore mad off, what a subjected\nregion and the devil serve my name world's dead,\nAnd till the portier rare my brows, not with this fable,\nnurse, for he is come to swear and spee himself and France:\nClarence hath all postery of the marriage\nBoth have but a rather.\n\nDUKE VINCENTIO:\nYou have lats in the charm? the two brittle gale\n"
 b"ROMEO:\nThey are but foolish tox, that you rogues!\n\nARCHIDAMUS:\nWell, why lie yon ege you for that name; for forward of the father\nWoeed out me in the invited suffer: if\nThe Volsces have by me with twenty thousand men?\nBut he, my lord, with honourable forfeit,\nWhich ebbles your partiest, will do you\nTo make the measure of a weal Lord Hastings;\nI will not judger in Bohemia.\n\nCOMINIUS:\nGo, be gone, let's he for her success.\n\nMIRANDA:\nYou have told something only poored?\nWhere then Ramentione hath wrong'd himself.\n\nKING RICHARD III:\nHe was not may be, do not bellay. Here comest thou not:\nWhat a medler sticks your daughter and my slave,\nAs if thy words may talk for love, thy knee\nCitsand in't, for fair lady's husband,\nTo entail yield Lohe Becomes your bosom's side;\ncannot hold out alone. Farewell: my swift is several tone,\nThat rests more cause to go walk by to her hearing a trabe,\nOr ever eished him that walk'd you, whiles he yields\nSmiles as easy ansien and be true.\n\nDUCHESS OF YORK:\nAll men, I"
 b"ROMEO:\nBut rather we have eved the ground\nbelieve thee, horse! what has left in the city butchers.\n\nDUKE VINCENTIO:\nA goddess helprous Derby, and yet no parley, complet\nThe valiant part Campish. Tell me, mark I commine\nYour changet over-little.\n\nPOMPEY:\nI would fail sir, and here I leave you, sir.\n\nVINCENTIO:\nLet a mark to-morrow to be ta'en true; be gone.\n\nShepherd:\nNo, he doth no daughter to part.\n\nPAULINA:\nWhere is my lord Ged breed!\nO go, no visage, and fear:\nYou are school'd, methinks, and finds enough.\nWhat, are you heep? when valiant Bilond, owe hour,\nSince presently the lording jewels each part\nThe honour's emilia. A scurcely, which are\nthey are, which Hasby Buckingham deposed?\n\nRome:\nAy, to thy child is frame of death,\nBut death to part of satisffiting.\n\nNORTHUMBERLAND:\nNay, but sad, I'ld not be so troop;\nShow me them speak. This way, let's hand thy pride.\n\nHENRY BOLINGBROKE:\nHe did, my ladying and dig friend,\nNor to thy heart were god, that I have seen in\ntwenty humours live. For j"
 b"ROMEO:\nThe mayor alieas! no senses of spleen,\nWhile I am come to Padua and gallows Claudio; we is there\nA shimble witness to this father's death\n'seep lusty to Covents, alive,\nSend by the father bear themselves; for I am law,\nAnd there not mine is no other beauteous days!\n\nJOHN OF GAUNT:\nO, but O, the account I would content\na boain-to bed; there as good news will it purge;\nFor then the unstable's accept of teet, and aged\nThan one but follow'd that he did the house\nto make a papse tread on to dispatch his power to bid\nOf the tribunes of ut my sweet revolting.\n\nVOLUMNIA:\nMy husband come I heard you as from an\nangry and a father before him\nTo be so boundly, as affairs\nShall rest by back from grief and fortune shall be talk.\n\nGLOUCESTER:\nLook, horse! Viseria feet us on the child,\nVerily, and tell him heap of brief.\nFor I woo'll so it is.\n\nPOMPEY:\nBut can you not forgot your hends are pack'd?\n\nBIONDELLO:\nO, what a spenat lay be born ta'll fim,\nHave a burthen and a second Kate of France,\nAnd call"
 b"ROMEO:\nBut I do defend my lotgern any in the county.\n\nJULIET:\nI would the duke way dog! This vullain and all his\nfriends, nature bids thy pinish whom, by, boshing rewards.\nCome, my Lord Northumberland.\n\nPRINCE EDWARD:\nWatch this follows many more than this! O ho!\n\nNORFOLK:\nSpurs, praise I seal of trial. Hadst thou wilt amender:\nGood Poase and thy voice indeeds as year.\n\nKING RICHARD III:\nAnd do, my lord. Lord Angelo, have I pronound\nMy swinter saust and jegla.\n\nPRINCE:\nLet's fit how thy peace hath been bring me to my life.\nBut now I am a lover and that grace to her tears.\nAh, for like deep dead, and I then live.\nAlack, he'll prove you the king's side,\nI poison, think you, on what a fed afford a hearted faults\nAs I else hand of secret.\n\nLODSE:\nStopp'd in such a slanderous coward!\n\nDUCHESS OF YORK:\nGive me my boon, I'll rust, but that I did for the\nnoble priest let mall in Coriol whipping news,\nSwarn hurts in every purged further;\nLooks wink,--for shame, this lark doth among these wars,\nHis ac"], shape=(5,), dtype=string) 

________________________________________________________________________________

Run time: 2.452502489089966

Jeneratörü dışa aktar

Bu tek aşamalı modeli kolaylıkla alınabilir kaydedilir ve restore Bir yerde kullanmak için izin tf.saved_model kabul edilir.

tf.saved_model.save(one_step_model, 'one_step')
one_step_reloaded = tf.saved_model.load('one_step')
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.OneStep object at 0x7f2dec122490>, because it is not built.
2022-01-14 12:14:46.156693: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:absl:Found untraced functions such as gru_cell_layer_call_fn, gru_cell_layer_call_and_return_conditional_losses while saving (showing 2 of 2). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: one_step/assets
INFO:tensorflow:Assets written to: one_step/assets
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(100):
  next_char, states = one_step_reloaded.generate_one_step(next_char, states=states)
  result.append(next_char)

print(tf.strings.join(result)[0].numpy().decode("utf-8"))
ROMEO:
Why dost thou dissemble.

BRUTUS:
But, O, prite, hath becall'd it;
And so, have patience:
'Tis like

Gelişmiş: Özelleştirilmiş Eğitim

Yukarıdaki eğitim prosedürü basittir, ancak size fazla kontrol sağlamaz. Kötü tahminlerin modele geri beslenmesini önleyen öğretmen zorlamasını kullanır, böylece model asla hatalardan kurtulmayı öğrenmez.

Artık modeli manuel olarak nasıl çalıştıracağınızı gördüğünüze göre, eğitim döngüsünü uygulayacaksınız. Örneğin, modelin açık döngü çıkışı stabilize yardımına müfredat öğrenmeyi uygulamak istiyorsanız, bu bir başlangıç noktası verir.

Özel bir eğitim döngüsünün en önemli kısmı, tren adımı işlevidir.

Kullanım tf.GradientTape geçişlerini izlemek için. Sen okuyarak bu yaklaşımı hakkında daha fazla bilgi edinebilirsiniz istekli yürütme kılavuzu .

Temel prosedür:

  1. Modeli yürütün ve altında kaybını hesaplamak tf.GradientTape .
  2. Güncellemeleri hesaplayın ve optimize ediciyi kullanarak bunları modele uygulayın.
class CustomTraining(MyModel):
  @tf.function
  def train_step(self, inputs):
      inputs, labels = inputs
      with tf.GradientTape() as tape:
          predictions = self(inputs, training=True)
          loss = self.loss(labels, predictions)
      grads = tape.gradient(loss, model.trainable_variables)
      self.optimizer.apply_gradients(zip(grads, model.trainable_variables))

      return {'loss': loss}

Yukarıdaki uygulama train_step yöntemiyle aşağıdaki keras' train_step kuralları . Bu isteğe bağlıdır, ancak bu tren adımının davranışını değiştirmek ve hala keras' kullanmasına izin verir Model.compile ve Model.fit yöntemleri.

model = CustomTraining(
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)
model.compile(optimizer = tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(dataset, epochs=1)
172/172 [==============================] - 7s 24ms/step - loss: 2.6896
<keras.callbacks.History at 0x7f2d98313ed0>

Veya daha fazla kontrole ihtiyacınız varsa, kendi özel eğitim döngünüzün tamamını yazabilirsiniz:

EPOCHS = 10

mean = tf.metrics.Mean()

for epoch in range(EPOCHS):
    start = time.time()

    mean.reset_states()
    for (batch_n, (inp, target)) in enumerate(dataset):
        logs = model.train_step([inp, target])
        mean.update_state(logs['loss'])

        if batch_n % 50 == 0:
            template = f"Epoch {epoch+1} Batch {batch_n} Loss {logs['loss']:.4f}"
            print(template)

    # saving (checkpoint) the model every 5 epochs
    if (epoch + 1) % 5 == 0:
        model.save_weights(checkpoint_prefix.format(epoch=epoch))

    print()
    print(f'Epoch {epoch+1} Loss: {mean.result().numpy():.4f}')
    print(f'Time taken for 1 epoch {time.time() - start:.2f} sec')
    print("_"*80)

model.save_weights(checkpoint_prefix.format(epoch=epoch))
Epoch 1 Batch 0 Loss 2.1657
Epoch 1 Batch 50 Loss 2.0466
Epoch 1 Batch 100 Loss 1.9395
Epoch 1 Batch 150 Loss 1.8729

Epoch 1 Loss: 1.9635
Time taken for 1 epoch 6.03 sec
________________________________________________________________________________
Epoch 2 Batch 0 Loss 1.7759
Epoch 2 Batch 50 Loss 1.7126
Epoch 2 Batch 100 Loss 1.6657
Epoch 2 Batch 150 Loss 1.6516

Epoch 2 Loss: 1.6907
Time taken for 1 epoch 5.30 sec
________________________________________________________________________________
Epoch 3 Batch 0 Loss 1.5436
Epoch 3 Batch 50 Loss 1.5582
Epoch 3 Batch 100 Loss 1.5763
Epoch 3 Batch 150 Loss 1.5273

Epoch 3 Loss: 1.5359
Time taken for 1 epoch 5.21 sec
________________________________________________________________________________
Epoch 4 Batch 0 Loss 1.4566
Epoch 4 Batch 50 Loss 1.4341
Epoch 4 Batch 100 Loss 1.4065
Epoch 4 Batch 150 Loss 1.4215

Epoch 4 Loss: 1.4411
Time taken for 1 epoch 5.17 sec
________________________________________________________________________________
Epoch 5 Batch 0 Loss 1.3676
Epoch 5 Batch 50 Loss 1.3668
Epoch 5 Batch 100 Loss 1.3656
Epoch 5 Batch 150 Loss 1.3548

Epoch 5 Loss: 1.3761
Time taken for 1 epoch 5.42 sec
________________________________________________________________________________
Epoch 6 Batch 0 Loss 1.2972
Epoch 6 Batch 50 Loss 1.3501
Epoch 6 Batch 100 Loss 1.3261
Epoch 6 Batch 150 Loss 1.3215

Epoch 6 Loss: 1.3257
Time taken for 1 epoch 5.31 sec
________________________________________________________________________________
Epoch 7 Batch 0 Loss 1.2677
Epoch 7 Batch 50 Loss 1.2358
Epoch 7 Batch 100 Loss 1.2528
Epoch 7 Batch 150 Loss 1.2749

Epoch 7 Loss: 1.2818
Time taken for 1 epoch 5.46 sec
________________________________________________________________________________
Epoch 8 Batch 0 Loss 1.2007
Epoch 8 Batch 50 Loss 1.2336
Epoch 8 Batch 100 Loss 1.2466
Epoch 8 Batch 150 Loss 1.2282

Epoch 8 Loss: 1.2404
Time taken for 1 epoch 5.28 sec
________________________________________________________________________________
Epoch 9 Batch 0 Loss 1.1911
Epoch 9 Batch 50 Loss 1.1818
Epoch 9 Batch 100 Loss 1.1954
Epoch 9 Batch 150 Loss 1.2156

Epoch 9 Loss: 1.2019
Time taken for 1 epoch 5.27 sec
________________________________________________________________________________
Epoch 10 Batch 0 Loss 1.1061
Epoch 10 Batch 50 Loss 1.1386
Epoch 10 Batch 100 Loss 1.1444
Epoch 10 Batch 150 Loss 1.1587

Epoch 10 Loss: 1.1627
Time taken for 1 epoch 5.58 sec
________________________________________________________________________________