ML Community Day è il 9 novembre! Unisciti a noi per gli aggiornamenti da tensorflow, JAX, e più Per saperne di più

Generazione di testo con un RNN

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza la fonte su GitHub Scarica il taccuino

Questo tutorial mostra come generare testo utilizzando un RNN basato sui caratteri. Si lavorerà con un set di dati di scrittura di Shakespeare da Andrej Karpathy L'irragionevole efficacia della ricorrenti reti neurali . Data una sequenza di caratteri da questi dati ("Shakespeare"), addestra un modello per prevedere il carattere successivo nella sequenza ("e"). Sequenze di testo più lunghe possono essere generate chiamando ripetutamente il modello.

Questo tutorial include il codice eseguibile implementato utilizzando tf.keras e esecuzione ansioso . Quello che segue è l'output di esempio quando il modello in questo tutorial è stato addestrato per 30 epoche e ha iniziato con il prompt "Q":

QUEENE:
I had thought thou hadst a Roman; for the oracle,
Thus by All bids the man against the word,
Which are so weak of care, by old care done;
Your children were in your holy love,
And the precipitation through the bleeding throne.

BISHOP OF ELY:
Marry, and will, my lord, to weep in such a one were prettiest;
Yet now I was adopted heir
Of the world's lamentable day,
To watch the next way with his father with his face?

ESCALUS:
The cause why then we are all resolved more sons.

VOLUMNIA:
O, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, it is no sin it should be dead,
And love and pale as any will to that word.

QUEEN ELIZABETH:
But how long have I heard the soul for this world,
And show his hands of life be proved to stand.

PETRUCHIO:
I say he look'd on, if I must be content
To stay him from the fatal of our country's bliss.
His lordship pluck'd from this sentence then for prey,
And then let us twain, being the moon,
were she such a case as fills m

Mentre alcune frasi sono grammaticali, la maggior parte non ha senso. Il modello non ha appreso il significato delle parole, ma considera:

  • Il modello è basato sui personaggi. Quando è iniziato l'addestramento, il modello non sapeva come si scrive una parola inglese, o che le parole erano anche un'unità di testo.

  • La struttura dell'output assomiglia a una riproduzione: i blocchi di testo generalmente iniziano con il nome di un oratore, in tutte lettere maiuscole simili al set di dati.

  • Come dimostrato di seguito, il modello viene addestrato su piccoli batch di testo (100 caratteri ciascuno) ed è ancora in grado di generare una sequenza di testo più lunga con una struttura coerente.

Impostare

Importa TensorFlow e altre librerie

import tensorflow as tf
from tensorflow.keras.layers.experimental import preprocessing

import numpy as np
import os
import time

Scarica il dataset di Shakespeare

Modifica la riga seguente per eseguire questo codice sui tuoi dati.

path_to_file = tf.keras.utils.get_file('shakespeare.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt')
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt
1122304/1115394 [==============================] - 0s 0us/step
1130496/1115394 [==============================] - 0s 0us/step

Leggi i dati

Per prima cosa, guarda nel testo:

# Read, then decode for py2 compat.
text = open(path_to_file, 'rb').read().decode(encoding='utf-8')
# length of text is the number of characters in it
print(f'Length of text: {len(text)} characters')
Length of text: 1115394 characters
# Take a look at the first 250 characters in text
print(text[:250])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

All:
Resolved. resolved.

First Citizen:
First, you know Caius Marcius is chief enemy to the people.
# The unique characters in the file
vocab = sorted(set(text))
print(f'{len(vocab)} unique characters')
65 unique characters

Elabora il testo

Vettorializzare il testo

Prima dell'addestramento, è necessario convertire le stringhe in una rappresentazione numerica.

Il preprocessing.StringLookup strato può convertire ogni carattere in un ID numerico. Ha solo bisogno che il testo sia prima diviso in token.

example_texts = ['abcdefg', 'xyz']

chars = tf.strings.unicode_split(example_texts, input_encoding='UTF-8')
chars
2021-08-11 18:24:53.295402: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.303654: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.304580: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.306209: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-08-11 18:24:53.306828: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.307802: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.308798: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.896425: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.897329: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.898198: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.899171: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14648 MB memory:  -> device: 0, name: Tesla V100-SXM2-16GB, pci bus id: 0000:00:05.0, compute capability: 7.0
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

Ora creare il preprocessing.StringLookup livello:

ids_from_chars = preprocessing.StringLookup(
    vocabulary=list(vocab), mask_token=None)

Converte i token dei moduli in ID dei caratteri:

ids = ids_from_chars(chars)
ids
<tf.RaggedTensor [[40, 41, 42, 43, 44, 45, 46], [63, 64, 65]]>

Poiché l'obiettivo di questo tutorial è generare testo, sarà anche importante invertire questa rappresentazione e recuperare da essa stringhe leggibili. Per questo si può utilizzare preprocessing.StringLookup(..., invert=True) .

chars_from_ids = tf.keras.layers.experimental.preprocessing.StringLookup(
    vocabulary=ids_from_chars.get_vocabulary(), invert=True, mask_token=None)

Questo strato recupera i personaggi dei vettori di ID, e li restituisce come tf.RaggedTensor di caratteri:

chars = chars_from_ids(ids)
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

È possibile tf.strings.reduce_join per unire i caratteri di nuovo in stringhe.

tf.strings.reduce_join(chars, axis=-1).numpy()
array([b'abcdefg', b'xyz'], dtype=object)
def text_from_ids(ids):
  return tf.strings.reduce_join(chars_from_ids(ids), axis=-1)

Il compito di previsione

Dato un carattere, o una sequenza di caratteri, qual è il prossimo carattere più probabile? Questa è l'attività che stai addestrando per eseguire il modello. L'input del modello sarà una sequenza di caratteri e il modello verrà addestrato per prevedere l'output, il carattere seguente in ogni fase temporale.

Poiché gli RNN mantengono uno stato interno che dipende dagli elementi visti in precedenza, dati tutti i caratteri calcolati fino a questo momento, qual è il carattere successivo?

Crea esempi e obiettivi di formazione

Quindi dividere il testo in sequenze di esempio. Ogni sequenza di ingresso conterrà seq_length caratteri dal testo.

Per ogni sequenza di input, i target corrispondenti contengono la stessa lunghezza di testo, tranne che è stata spostata di un carattere a destra.

Così rompere il testo in blocchi di seq_length+1 . Ad esempio, diciamo seq_length è 4 e il nostro testo è "Ciao". La sequenza di input sarebbe "Hell" e la sequenza di destinazione "ello".

Per fare questo primo utilizzo i tf.data.Dataset.from_tensor_slices funzione per convertire il vettore di testo in un flusso di indici di carattere.

all_ids = ids_from_chars(tf.strings.unicode_split(text, 'UTF-8'))
all_ids
<tf.Tensor: shape=(1115394,), dtype=int64, numpy=array([19, 48, 57, ..., 46,  9,  1])>
ids_dataset = tf.data.Dataset.from_tensor_slices(all_ids)
for ids in ids_dataset.take(10):
    print(chars_from_ids(ids).numpy().decode('utf-8'))
F
i
r
s
t
 
C
i
t
i
seq_length = 100
examples_per_epoch = len(text)//(seq_length+1)

Il batch metodo consente di convertire facilmente i singoli caratteri a sequenze di dimensioni desiderate.

sequences = ids_dataset.batch(seq_length+1, drop_remainder=True)

for seq in sequences.take(1):
  print(chars_from_ids(seq))
tf.Tensor(
[b'F' b'i' b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':'
 b'\n' b'B' b'e' b'f' b'o' b'r' b'e' b' ' b'w' b'e' b' ' b'p' b'r' b'o'
 b'c' b'e' b'e' b'd' b' ' b'a' b'n' b'y' b' ' b'f' b'u' b'r' b't' b'h'
 b'e' b'r' b',' b' ' b'h' b'e' b'a' b'r' b' ' b'm' b'e' b' ' b's' b'p'
 b'e' b'a' b'k' b'.' b'\n' b'\n' b'A' b'l' b'l' b':' b'\n' b'S' b'p' b'e'
 b'a' b'k' b',' b' ' b's' b'p' b'e' b'a' b'k' b'.' b'\n' b'\n' b'F' b'i'
 b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':' b'\n' b'Y'
 b'o' b'u' b' '], shape=(101,), dtype=string)

È più facile vedere cosa sta facendo se si uniscono i token in stringhe:

for seq in sequences.take(5):
  print(text_from_ids(seq).numpy())
b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '
b'are all resolved rather to die than to famish?\n\nAll:\nResolved. resolved.\n\nFirst Citizen:\nFirst, you k'
b"now Caius Marcius is chief enemy to the people.\n\nAll:\nWe know't, we know't.\n\nFirst Citizen:\nLet us ki"
b"ll him, and we'll have corn at our own price.\nIs't a verdict?\n\nAll:\nNo more talking on't; let it be d"
b'one: away, away!\n\nSecond Citizen:\nOne word, good citizens.\n\nFirst Citizen:\nWe are accounted poor citi'

Per la formazione avrete bisogno di un set di dati di (input, label) coppie. Dove input e label sono sequenze. Ad ogni passo l'input è il carattere corrente e l'etichetta è il carattere successivo.

Ecco una funzione che accetta una sequenza come input, la duplica e la sposta per allineare l'input e l'etichetta per ogni timestep:

def split_input_target(sequence):
    input_text = sequence[:-1]
    target_text = sequence[1:]
    return input_text, target_text
split_input_target(list("Tensorflow"))
(['T', 'e', 'n', 's', 'o', 'r', 'f', 'l', 'o'],
 ['e', 'n', 's', 'o', 'r', 'f', 'l', 'o', 'w'])
dataset = sequences.map(split_input_target)
for input_example, target_example in dataset.take(1):
    print("Input :", text_from_ids(input_example).numpy())
    print("Target:", text_from_ids(target_example).numpy())
Input : b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou'
Target: b'irst Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '
2021-08-11 18:24:54.893532: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)

Crea batch di allenamento

Si è utilizzato tf.data di dividere il testo in sequenze gestibili. Ma prima di inserire questi dati nel modello, è necessario mescolare i dati e comprimerli in batch.

# Batch size
BATCH_SIZE = 64

# Buffer size to shuffle the dataset
# (TF data is designed to work with possibly infinite sequences,
# so it doesn't attempt to shuffle the entire sequence in memory. Instead,
# it maintains a buffer in which it shuffles elements).
BUFFER_SIZE = 10000

dataset = (
    dataset
    .shuffle(BUFFER_SIZE)
    .batch(BATCH_SIZE, drop_remainder=True)
    .prefetch(tf.data.experimental.AUTOTUNE))

dataset
<PrefetchDataset shapes: ((64, 100), (64, 100)), types: (tf.int64, tf.int64)>

Costruisci il modello

Questa sezione definisce il modello come keras.Model sottoclasse (per dettagli vedere Conoscere nuovi livelli e modelli tramite sottoclassi ).

Questo modello ha tre strati:

  • tf.keras.layers.Embedding : Lo strato di input. Una tabella di ricerca addestrabile che mapperà ogni carattere-ID ad un vettore con embedding_dim dimensioni;
  • tf.keras.layers.GRU : Un tipo di RNN con dimensioni units=rnn_units (È anche possibile utilizzare uno strato LSTM qui.)
  • tf.keras.layers.Dense : Lo strato di output, con vocab_size uscite. Produce un logit per ogni carattere nel vocabolario. Queste sono le probabilità logaritmiche di ogni personaggio secondo il modello.
# Length of the vocabulary in chars
vocab_size = len(vocab)

# The embedding dimension
embedding_dim = 256

# Number of RNN units
rnn_units = 1024
class MyModel(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, rnn_units):
    super().__init__(self)
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(rnn_units,
                                   return_sequences=True,
                                   return_state=True)
    self.dense = tf.keras.layers.Dense(vocab_size)

  def call(self, inputs, states=None, return_state=False, training=False):
    x = inputs
    x = self.embedding(x, training=training)
    if states is None:
      states = self.gru.get_initial_state(x)
    x, states = self.gru(x, initial_state=states, training=training)
    x = self.dense(x, training=training)

    if return_state:
      return x, states
    else:
      return x
model = MyModel(
    # Be sure the vocabulary size matches the `StringLookup` layers.
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)

Per ogni carattere il modello cerca l'incorporamento, esegue il GRU un timestep con l'incorporamento come input e applica lo strato denso per generare logit che prevedono la verosimiglianza logaritmica del carattere successivo:

Un disegno dei dati che passano attraverso il modello

Prova il modello

Ora esegui il modello per vedere che si comporta come previsto.

Per prima cosa controlla la forma dell'output:

for input_example_batch, target_example_batch in dataset.take(1):
    example_batch_predictions = model(input_example_batch)
    print(example_batch_predictions.shape, "# (batch_size, sequence_length, vocab_size)")
2021-08-11 18:24:57.345541: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8100
(64, 100, 66) # (batch_size, sequence_length, vocab_size)

Nell'esempio sopra la lunghezza della sequenza di ingresso è 100 ma il modello può essere eseguito su ingressi di qualsiasi lunghezza:

model.summary()
Model: "my_model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        multiple                  16896     
_________________________________________________________________
gru (GRU)                    multiple                  3938304   
_________________________________________________________________
dense (Dense)                multiple                  67650     
=================================================================
Total params: 4,022,850
Trainable params: 4,022,850
Non-trainable params: 0
_________________________________________________________________

Per ottenere previsioni effettive dal modello è necessario campionare dalla distribuzione dell'output, per ottenere gli indici dei caratteri effettivi. Questa distribuzione è definita dai logit sul vocabolario dei caratteri.

Provalo per il primo esempio nel batch:

sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)
sampled_indices = tf.squeeze(sampled_indices, axis=-1).numpy()

Questo ci dà, ad ogni passo temporale, una previsione del prossimo indice di caratteri:

sampled_indices
array([41, 38,  9, 28,  6, 50, 20, 59, 44,  5, 51, 19, 40, 61, 13, 18, 32,
        0, 13,  0, 27, 37, 10, 46, 38, 40, 28, 22, 14, 44, 35, 22, 44, 16,
       17,  8, 55, 17, 39, 47, 47, 23,  3, 32, 30, 15, 10, 32,  8,  8,  3,
       47, 40, 38, 13,  5, 57, 12, 39,  5,  6, 14, 30, 12, 63, 51, 10, 14,
       52,  1, 47, 15, 48, 28, 38, 16, 22,  7, 59, 45, 44, 62, 23, 32, 36,
       40, 28, 65, 60,  7,  8,  0, 19, 28, 32, 62, 61, 20, 64,  6])

Decodifica questi per vedere il testo previsto da questo modello non addestrato:

print("Input:\n", text_from_ids(input_example_batch[0]).numpy())
print()
print("Next Char Predictions:\n", text_from_ids(sampled_indices).numpy())
Input:
 b'ous, and not valiant, you have shamed me\nIn your condemned seconds.\n\nCOMINIUS:\nIf I should tell thee'

Next Char Predictions:
 b"bY.O'kGte&lFav?ES[UNK]?[UNK]NX3gYaOIAeVIeCD-pDZhhJ!SQB3S--!haY?&r;Z&'AQ;xl3Am\nhBiOYCI,tfewJSWaOzu,-[UNK]FOSwvGy'"

Allena il modello

A questo punto il problema può essere trattato come un problema di classificazione standard. Dato lo stato RNN precedente e l'input in questo passaggio temporale, prevedere la classe del carattere successivo.

Collega un ottimizzatore e una funzione di perdita

Lo standard tf.keras.losses.sparse_categorical_crossentropy funzione di perdita funziona in questo caso, perché è applicato in tutta l'ultima dimensione delle previsioni.

Perché il vostro modello ritorna logit, è necessario impostare il from_logits bandiera.

loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
mean_loss = example_batch_loss.numpy().mean()
print("Prediction shape: ", example_batch_predictions.shape, " # (batch_size, sequence_length, vocab_size)")
print("Mean loss:        ", mean_loss)
Prediction shape:  (64, 100, 66)  # (batch_size, sequence_length, vocab_size)
Mean loss:         4.191435

Un modello appena inizializzato non dovrebbe essere troppo sicuro di se stesso, i logit di output dovrebbero avere tutti grandezze simili. A conferma di ciò puoi verificare che l'esponenziale della perdita media sia approssimativamente uguale alla dimensione del vocabolario. Una perdita molto più alta significa che il modello è sicuro delle sue risposte sbagliate ed è inizializzato male:

tf.exp(mean_loss).numpy()
66.11759

Configurare la procedura di formazione utilizzando il tf.keras.Model.compile metodo. Utilizzare tf.keras.optimizers.Adam con argomenti di default e la funzione di perdita.

model.compile(optimizer='adam', loss=loss)

Configura i checkpoint

Utilizzare un tf.keras.callbacks.ModelCheckpoint per assicurare che i punti di controllo vengono salvate durante l'allenamento:

# Directory where the checkpoints will be saved
checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_prefix,
    save_weights_only=True)

Eseguire la formazione

Per mantenere il tempo di addestramento ragionevole, utilizzare 10 epoche per addestrare il modello. In Colab, imposta il runtime su GPU per un training più rapido.

EPOCHS = 20
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])
Epoch 1/20
172/172 [==============================] - 6s 23ms/step - loss: 2.7361
Epoch 2/20
172/172 [==============================] - 5s 23ms/step - loss: 2.0067
Epoch 3/20
172/172 [==============================] - 5s 23ms/step - loss: 1.7364
Epoch 4/20
172/172 [==============================] - 5s 23ms/step - loss: 1.5729
Epoch 5/20
172/172 [==============================] - 5s 23ms/step - loss: 1.4700
Epoch 6/20
172/172 [==============================] - 5s 23ms/step - loss: 1.4000
Epoch 7/20
172/172 [==============================] - 5s 23ms/step - loss: 1.3465
Epoch 8/20
172/172 [==============================] - 5s 23ms/step - loss: 1.3007
Epoch 9/20
172/172 [==============================] - 5s 23ms/step - loss: 1.2610
Epoch 10/20
172/172 [==============================] - 5s 23ms/step - loss: 1.2223
Epoch 11/20
172/172 [==============================] - 5s 23ms/step - loss: 1.1842
Epoch 12/20
172/172 [==============================] - 5s 23ms/step - loss: 1.1460
Epoch 13/20
172/172 [==============================] - 5s 23ms/step - loss: 1.1055
Epoch 14/20
172/172 [==============================] - 5s 23ms/step - loss: 1.0626
Epoch 15/20
172/172 [==============================] - 5s 24ms/step - loss: 1.0170
Epoch 16/20
172/172 [==============================] - 5s 23ms/step - loss: 0.9692
Epoch 17/20
172/172 [==============================] - 5s 23ms/step - loss: 0.9181
Epoch 18/20
172/172 [==============================] - 5s 23ms/step - loss: 0.8670
Epoch 19/20
172/172 [==============================] - 5s 23ms/step - loss: 0.8143
Epoch 20/20
172/172 [==============================] - 5s 23ms/step - loss: 0.7647

Genera testo

Il modo più semplice per generare testo con questo modello è eseguirlo in un ciclo e tenere traccia dello stato interno del modello mentre lo si esegue.

Per generare il testo, l'output del modello viene restituito all'input

Ogni volta che chiami il modello, passi del testo e uno stato interno. Il modello restituisce una previsione per il carattere successivo e il suo nuovo stato. Passa la previsione e ripeti per continuare a generare il testo.

Quanto segue fa una previsione a passo singolo:

class OneStep(tf.keras.Model):
  def __init__(self, model, chars_from_ids, ids_from_chars, temperature=1.0):
    super().__init__()
    self.temperature = temperature
    self.model = model
    self.chars_from_ids = chars_from_ids
    self.ids_from_chars = ids_from_chars

    # Create a mask to prevent "[UNK]" from being generated.
    skip_ids = self.ids_from_chars(['[UNK]'])[:, None]
    sparse_mask = tf.SparseTensor(
        # Put a -inf at each bad index.
        values=[-float('inf')]*len(skip_ids),
        indices=skip_ids,
        # Match the shape to the vocabulary
        dense_shape=[len(ids_from_chars.get_vocabulary())])
    self.prediction_mask = tf.sparse.to_dense(sparse_mask)

  @tf.function
  def generate_one_step(self, inputs, states=None):
    # Convert strings to token IDs.
    input_chars = tf.strings.unicode_split(inputs, 'UTF-8')
    input_ids = self.ids_from_chars(input_chars).to_tensor()

    # Run the model.
    # predicted_logits.shape is [batch, char, next_char_logits]
    predicted_logits, states = self.model(inputs=input_ids, states=states,
                                          return_state=True)
    # Only use the last prediction.
    predicted_logits = predicted_logits[:, -1, :]
    predicted_logits = predicted_logits/self.temperature
    # Apply the prediction mask: prevent "[UNK]" from being generated.
    predicted_logits = predicted_logits + self.prediction_mask

    # Sample the output logits to generate token IDs.
    predicted_ids = tf.random.categorical(predicted_logits, num_samples=1)
    predicted_ids = tf.squeeze(predicted_ids, axis=-1)

    # Convert from token ids to characters
    predicted_chars = self.chars_from_ids(predicted_ids)

    # Return the characters and model state.
    return predicted_chars, states
one_step_model = OneStep(model, chars_from_ids, ids_from_chars)

Eseguilo in un ciclo per generare del testo. Guardando il testo generato, vedrai che il modello sa quando scrivere in maiuscolo, creare paragrafi e imita un vocabolario di scrittura simile a Shakespeare. Con il piccolo numero di epoche di formazione, non ha ancora imparato a formare frasi coerenti.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result[0].numpy().decode('utf-8'), '\n\n' + '_'*80)
print('\nRun time:', end - start)
ROMEO:
It is a very example
Here done to Elcompash of her griefs, wherein Choise,
Without my enemy; you are o'er this scene
Thoughts that sown'd off to have a sufficient mon
hath made it on the people, break our case:
Who inciddst the hour, think you be gone?

MENENIUS:
For what I see, I doubt there was more periol to their friends?

GLOUCESTER:
Have you not hear? the senate pass down forth,
Countenance, prefermants, devised in courtezage,
Of it at punishes, and cry batter King Henry's use!

JULIET:
If they did I but last; I say to thir,
And fly: my vooking in those thing, it brings;
After an act, may stand in my foe instant?

FRIAR LAURENCE:
So much upon the serving-creature.

Second Katharinan,
Save you this young father, news, will kiss
your honour to a covert fance to Farcius' blaze is expiled
till choose and call the foem of cheer himself.
Not so deliver, for this night shall be a cut-out
Yourselfs; as the flowers cannot no: what he pleg-son,
As the pay to her heavy, marches?

MARCIUS:
 

________________________________________________________________________________

Run time: 2.3087921142578125

La cosa più semplice che si può fare per migliorare i risultati è quello di formare più a lungo (provate EPOCHS = 30 ).

Puoi anche sperimentare con una stringa di inizio diversa, provare ad aggiungere un altro livello RNN per migliorare la precisione del modello o regolare il parametro della temperatura per generare previsioni più o meno casuali.

Se si desidera che il modello per generare testo più velocemente la cosa più semplice che si può fare è partita la generazione di testo. Nell'esempio seguente il modello genera 5 output all'incirca nello stesso tempo impiegato per generarne 1 sopra.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result, '\n\n' + '_'*80)
print('\nRun time:', end - start)
tf.Tensor(
[b"ROMEO:\nIt is my daughter, whom thou hast, no, no, what many which ho\ncaused for fear. Then?\n\nFirst Citizen:\nCousin of Buckingham, and therefore wast thou thin,\nBy Jove her thunder, not on him.\n\nFLORIZEL:\nMy lord,\nYou never spow him so perform her life;\nBut had thought the wanted counsel on the world,\nThe baid of old tale from him by foes,\nLike all forms, he doth not the duke well for herself.\nThe sons and fam is strucken murder;\nAnd bless he shall not be long.\nWhereto he better nothing, by the east,\nWas factionary against Exeter!\n\nHERMION:\nWhere is your pain? hings in a soldier.\n\nShepherd:\n'Tis south; I will not go by this; he loves' me\nThough noble Contro's shump.\n\nAEdile:\nHe's sudden; tood my friends are too sun\nPat on him an embastiest York by day, my liege,\nProfesses to follow Marcius.\n\nCOMINIUS:\nIt was come to us!\nBut, our queen, those weeping pay the formers any other;\nAnon even he should seem to dry.\n\nHESS OF YORK:\nMy lord, he both be so farther,\nBut 'tis as banish'd from the mind of "
 b"ROMEO:\nIt is spoke for triumphant garly, fis\nFresh out my daughter and the deed-joy\njeasons that I was lost innation and eyes from the\nthy glims.\n\nFROTH:\nHere comes this way, and sellow'd for and\nspeechange; cry 'D; inchance his down and with the or-house,\nWhere indeed the sedicing scholarging disdains\nDrows you.\n\nAlipan:\nWhere's Clifford; we will confess too,\nOr, by this song, nor pray now what I did\nHer uncle Rivers stands you to take away;\nBut in the like known thereof discresed at his\nheart wept humble as a pitch'd any right.\nWhereto I, 'Hill Henry, and you, my lord,\nKnow't again by Angelo, the head maid\nFalse to another scorns thus daring for\nAn angry ay angry. Veriling you\nThan which you are heart, gave war nor none within;\nTell he that first wretched to her dower, though it begin.\n\nDUKE VINCENTIO:\nWhere is Aufidius sister? how much factos loath\nto pride: King Richard in Bianco's singing.\n\nMARIANA:\nWhy art thou harst: for, to retire yourself\nTo County many thousand humble stains.\nSawnt"
 b"ROMEO:\nSatisfy!\nThink'st thou hast thou out of true applace: throw away\nThe rather for incapab-torment.\n\nGLoUCESTER:\nSo Gaunt in Eye wrong'd, belike.\n\nQUEEN:\n'Tis little friend, thou couldst know; mencle, Clifford.\nDid ut up the flesh; the sons and blubter\nTannot countervail the conquest of thyself.\nBut how must be a king, as hideous ass\nShould you go's assural trembling adjer!\nWhy shall deserve you but assuar their\ncoats of such persons to be your castle.\nCondemning soul to him and heir more than\nHer sups, moresely three women\none and a hongy: you have like his curediar,\nAnd chase him in the infirmine breachs.\n\nKING EDWARD IV:\nCansault thou son? She's a word.\n\nSICINIUS:\nThis shows assurance how the house of love\nLidst both our subjects as the senate's death;\nSoce thou consent to bitter, by the way to life\nBut my entity to give I agree:\nHield!\n\nBUCKINGHAM:\nMy lord, this last out with our complexions\nCherish rooted distapsups and call folls.\n\nLADY ANNE:\nWere he that wonders to us all the chan"
 b"ROMEO:\nI pray you, gentlemen.\n\nJULIET:\nMy lord, gath nothing in Padua for a\npiece of cut as a horseman I please;\nI'll follow what we speak again of love,\nIs broke an oath from false for me.\n\nGLOUCESTER:\nWell, jost ignorant of despite of my grief;\nAnd thus I pity three thou wast born.\n\nQUEEN ELIZABETH:\nWhy have you not done, Henry's coming smiles,\n'Tis like one inferious vengeance condemn'd\nBy Heavens and noblence foldying\nto her honour. what he comes long eate?\n\nHASTINGS:\nGo, get thee even to thus, that flies;\nI would adont the royally out of dist;\nAnd thus I turn and much since that make fair\nSun with such finger in quiet wnat, and Sariant\nShould have been either queen.\n\nISABELLA:\nPetruchio! Who is is the supper venge.\n\nSecond Murderer:\nO looken soul!\n\nA Forders, Earl of Clarence,--here is coming him.\n\nHORTENSIO:\nSay, when you saw you shall bectwary.\n\nCOMINIUS:\nYou have fought it the elder, the\nson: xishonour here the soretire passing slaves.\nAnd in his tidly I brought my good deed,\nAre nev"
 b"ROMEO:\nVillanted the blood reign purpose\nnot more and she would quench it. Should Such a\npentinus lipt from worth of charity.\nHow can we fing it, like a drum of me?\nSpeak, tending, O, how can I have seen your\nsaids, lest the hirs weeping earth, one shall\nIn such as you to bitter, but we east for King of\nThe pretties of his officer: yet your bey,\nThe curn'd deputy nexty. Tybalt, that's\nunfortunage, take this poor delivers to a friend,\nAnd grief hath kept in sign of knotking note.\nWelcome! Saint yet Murderer: to this scoldif cares\nThat I have not in my desire.\nNay, what will you such things prevent it, hands.\n\nKING RICHARD II:\nHow now, by thee!\n\nCLAUDIO:\nNo, good father.\n\nDUKE VINCENTIO:\nHow now, is gone to Raptatur, add, took fortune between\nmy life for time put forth parture most straitle queen's.\n\nHENRY BOLINGBROKE:\nUrge in any, unhappy by this news,\nWhilst thou lies She not remain, as if\nher fortune is not so rise report the queen?\n\nGLOUCESTER:\nStand up, Oncring me?\n\nLADYARAN:\n\nHERMIONE:\nN"], shape=(5,), dtype=string) 

________________________________________________________________________________

Run time: 2.1990060806274414

Esporta il generatore

Questo modello single-step può essere facilmente salvato e ripristinato , che consente di utilizzare ovunque un tf.saved_model è accettato.

tf.saved_model.save(one_step_model, 'one_step')
one_step_reloaded = tf.saved_model.load('one_step')
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.OneStep object at 0x7fdfad429d90>, because it is not built.
2021-08-11 18:26:53.785069: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:absl:Found untraced functions such as gru_cell_layer_call_fn, gru_cell_layer_call_and_return_conditional_losses, gru_cell_layer_call_fn, gru_cell_layer_call_and_return_conditional_losses, gru_cell_layer_call_and_return_conditional_losses while saving (showing 5 of 5). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: one_step/assets
INFO:tensorflow:Assets written to: one_step/assets
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(100):
  next_char, states = one_step_reloaded.generate_one_step(next_char, states=states)
  result.append(next_char)

print(tf.strings.join(result)[0].numpy().decode("utf-8"))
ROMEO:
Be a booqued banish'd: sly us or old
Yeed Margaret: and therefore follow'd there?

BUCKINGHAM:
Why,

Avanzato: formazione personalizzata

La procedura di addestramento di cui sopra è semplice, ma non ti dà molto controllo. Utilizza la forzatura dell'insegnante che impedisce che le previsioni errate vengano restituite al modello, in modo che il modello non impari mai a riprendersi dagli errori.

Quindi, ora che hai visto come eseguire manualmente il modello, implementerai il ciclo di addestramento. Questo dà un punto di partenza, se, per esempio, si desidera implementare l'apprendimento curriculum per contribuire a stabilizzare l'uscita ad anello aperto del modello.

La parte più importante di un ciclo di allenamento personalizzato è la funzione di passaggio del treno.

Utilizzare tf.GradientTape per monitorare le pendenze. È possibile saperne di più su questo approccio leggendo la guida di esecuzione ansioso .

La procedura di base è:

  1. Eseguire il modello e calcolare la perdita sotto un tf.GradientTape .
  2. Calcola gli aggiornamenti e applicali al modello utilizzando l'ottimizzatore.
class CustomTraining(MyModel):
  @tf.function
  def train_step(self, inputs):
      inputs, labels = inputs
      with tf.GradientTape() as tape:
          predictions = self(inputs, training=True)
          loss = self.loss(labels, predictions)
      grads = tape.gradient(loss, model.trainable_variables)
      self.optimizer.apply_gradients(zip(grads, model.trainable_variables))

      return {'loss': loss}

Quanto sopra attuazione del train_step metodo segue KERAS' train_step convenzioni . Questo è opzionale, ma consente di modificare il comportamento del passaggio del treno e continuare a utilizzare Keras' Model.compile e Model.fit metodi.

model = CustomTraining(
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)
model.compile(optimizer = tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(dataset, epochs=1)
172/172 [==============================] - 7s 23ms/step - loss: 2.7296
<keras.callbacks.History at 0x7fdfad7bf090>

Oppure, se hai bisogno di maggiore controllo, puoi scrivere il tuo ciclo di allenamento personalizzato completo:

EPOCHS = 10

mean = tf.metrics.Mean()

for epoch in range(EPOCHS):
    start = time.time()

    mean.reset_states()
    for (batch_n, (inp, target)) in enumerate(dataset):
        logs = model.train_step([inp, target])
        mean.update_state(logs['loss'])

        if batch_n % 50 == 0:
            template = f"Epoch {epoch+1} Batch {batch_n} Loss {logs['loss']:.4f}"
            print(template)

    # saving (checkpoint) the model every 5 epochs
    if (epoch + 1) % 5 == 0:
        model.save_weights(checkpoint_prefix.format(epoch=epoch))

    print()
    print(f'Epoch {epoch+1} Loss: {mean.result().numpy():.4f}')
    print(f'Time taken for 1 epoch {time.time() - start:.2f} sec')
    print("_"*80)

model.save_weights(checkpoint_prefix.format(epoch=epoch))
Epoch 1 Batch 0 Loss 2.1729
Epoch 1 Batch 50 Loss 2.0531
Epoch 1 Batch 100 Loss 1.9573
Epoch 1 Batch 150 Loss 1.8028

Epoch 1 Loss: 1.9959
Time taken for 1 epoch 5.83 sec
________________________________________________________________________________
Epoch 2 Batch 0 Loss 1.8247
Epoch 2 Batch 50 Loss 1.7950
Epoch 2 Batch 100 Loss 1.7317
Epoch 2 Batch 150 Loss 1.6410

Epoch 2 Loss: 1.7202
Time taken for 1 epoch 5.28 sec
________________________________________________________________________________
Epoch 3 Batch 0 Loss 1.6101
Epoch 3 Batch 50 Loss 1.5863
Epoch 3 Batch 100 Loss 1.5252
Epoch 3 Batch 150 Loss 1.5194

Epoch 3 Loss: 1.5582
Time taken for 1 epoch 5.23 sec
________________________________________________________________________________
Epoch 4 Batch 0 Loss 1.4622
Epoch 4 Batch 50 Loss 1.4623
Epoch 4 Batch 100 Loss 1.4729
Epoch 4 Batch 150 Loss 1.4334

Epoch 4 Loss: 1.4580
Time taken for 1 epoch 5.30 sec
________________________________________________________________________________
Epoch 5 Batch 0 Loss 1.4144
Epoch 5 Batch 50 Loss 1.4157
Epoch 5 Batch 100 Loss 1.3952
Epoch 5 Batch 150 Loss 1.3634

Epoch 5 Loss: 1.3902
Time taken for 1 epoch 5.48 sec
________________________________________________________________________________
Epoch 6 Batch 0 Loss 1.3419
Epoch 6 Batch 50 Loss 1.3228
Epoch 6 Batch 100 Loss 1.3308
Epoch 6 Batch 150 Loss 1.3092

Epoch 6 Loss: 1.3365
Time taken for 1 epoch 5.22 sec
________________________________________________________________________________
Epoch 7 Batch 0 Loss 1.3353
Epoch 7 Batch 50 Loss 1.2958
Epoch 7 Batch 100 Loss 1.2993
Epoch 7 Batch 150 Loss 1.3049

Epoch 7 Loss: 1.2915
Time taken for 1 epoch 5.33 sec
________________________________________________________________________________
Epoch 8 Batch 0 Loss 1.2323
Epoch 8 Batch 50 Loss 1.2712
Epoch 8 Batch 100 Loss 1.2089
Epoch 8 Batch 150 Loss 1.2661

Epoch 8 Loss: 1.2513
Time taken for 1 epoch 5.21 sec
________________________________________________________________________________
Epoch 9 Batch 0 Loss 1.2154
Epoch 9 Batch 50 Loss 1.2268
Epoch 9 Batch 100 Loss 1.2334
Epoch 9 Batch 150 Loss 1.2292

Epoch 9 Loss: 1.2124
Time taken for 1 epoch 5.24 sec
________________________________________________________________________________
Epoch 10 Batch 0 Loss 1.1712
Epoch 10 Batch 50 Loss 1.1542
Epoch 10 Batch 100 Loss 1.1887
Epoch 10 Batch 150 Loss 1.2040

Epoch 10 Loss: 1.1734
Time taken for 1 epoch 5.56 sec
________________________________________________________________________________