모델 적용하기
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
소개
TensorFlow Serving은 운영 환경을 위해 설계되었으며 머신러닝 모델을 고성능으로 적용하는 유연한 시스템입니다. TensorFlow Serving을 사용하면 동일한 서버 아키텍처와 API를 유지하면서 새로운 알고리즘과 실험을 쉽게 배포할 수 있습니다. TensorFlow Serving은 TensorFlow 모델과의 기본적인 통합을 제공하면서도 다른 유형의 모델 및 데이터를 제공하도록 쉽게 확장할 수 있습니다.
다음은 TensorFlow Serving에 대한 자세한 개발자 설명서입니다.
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2021-04-08(UTC)
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2021-04-08(UTC)"],[],[]]