Ayuda a proteger la Gran Barrera de Coral con TensorFlow en Kaggle Únete Challenge

Tutorial simple de canalización TFX usando el conjunto de datos Penguin

Un breve tutorial para ejecutar una canalización TFX simple.

En este tutorial basado en notebook, crearemos y ejecutaremos una canalización TFX para un modelo de clasificación simple. La tubería constará de tres componentes TFX esenciales: ExampleGen, Trainer y Pusher. La canalización incluye el flujo de trabajo de aprendizaje automático más mínimo, como importar datos, entrenar un modelo y exportar el modelo entrenado.

Por favor, vea Comprender TFX Tuberías para aprender más acerca de los diversos conceptos en TFX.

Configurar

Primero necesitamos instalar el paquete TFX Python y descargar el conjunto de datos que usaremos para nuestro modelo.

Actualizar Pip

Para evitar actualizar Pip en un sistema cuando se ejecuta localmente, verifique que estemos ejecutando en Colab. Por supuesto, los sistemas locales se pueden actualizar por separado.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Instalar TFX

pip install -U tfx

¿Reinició el tiempo de ejecución?

Si está utilizando Google Colab, la primera vez que ejecuta la celda anterior, debe reiniciar el tiempo de ejecución haciendo clic sobre el botón "RESTART RUNTIME" o usando el menú "Runtime> Restart runtime ...". Esto se debe a la forma en que Colab carga los paquetes.

Consulta las versiones de TensorFlow y TFX.

import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.3.3

Configurar variables

Hay algunas variables que se utilizan para definir una canalización. Puede personalizar estas variables como desee. De forma predeterminada, toda la salida de la canalización se generará en el directorio actual.

import os

PIPELINE_NAME = "penguin-simple"

# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)

from absl import logging
logging.set_verbosity(logging.INFO)  # Set default logging level.

Preparar datos de ejemplo

Descargaremos el conjunto de datos de ejemplo para usarlo en nuestra canalización TFX. El conjunto de datos que estamos utilizando es el conjunto de datos Palmer Pingüinos que también se utiliza en otros ejemplos TFX .

Hay cuatro características numéricas en este conjunto de datos:

  • culmen_length_mm
  • culmen_depth_mm
  • flipper_length_mm
  • body_mass_g

Todas las características ya se normalizaron para tener un rango [0,1]. Vamos a construir un modelo de clasificación que predice las species de pingüinos.

Debido a que TFX ExampleGen lee las entradas de un directorio, necesitamos crear un directorio y copiar el conjunto de datos en él.

import urllib.request
import tempfile

DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data')  # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-data_s893k6q/data.csv', <http.client.HTTPMessage at 0x7f1b4946a910>)

Eche un vistazo rápido al archivo CSV.

head {_data_filepath}
species,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g
0,0.2545454545454545,0.6666666666666666,0.15254237288135594,0.2916666666666667
0,0.26909090909090905,0.5119047619047618,0.23728813559322035,0.3055555555555556
0,0.29818181818181805,0.5833333333333334,0.3898305084745763,0.1527777777777778
0,0.16727272727272732,0.7380952380952381,0.3559322033898305,0.20833333333333334
0,0.26181818181818167,0.892857142857143,0.3050847457627119,0.2638888888888889
0,0.24727272727272717,0.5595238095238096,0.15254237288135594,0.2569444444444444
0,0.25818181818181823,0.773809523809524,0.3898305084745763,0.5486111111111112
0,0.32727272727272727,0.5357142857142859,0.1694915254237288,0.1388888888888889
0,0.23636363636363636,0.9642857142857142,0.3220338983050847,0.3055555555555556

Debería poder ver cinco valores. species es uno de 0, 1 o 2, y todas las demás características debe tener valores entre 0 y 1.

Crea una canalización

Las canalizaciones TFX se definen mediante las API de Python. Definiremos una tubería que consta de los siguientes tres componentes.

  • CsvExampleGen: lee archivos de datos y los convierte al formato interno TFX para su posterior procesamiento. Hay múltiples ExampleGen s para varios formatos. En este tutorial, usaremos CsvExampleGen que toma la entrada del archivo CSV.
  • Entrenador: entrena un modelo ML. Componente formador requiere un código de definición del modelo de los usuarios. Puede utilizar las API TensorFlow para especificar cómo entrenar un modelo y guardarlo en un formato modelo _saved.
  • Empujador: copia el modelo entrenado fuera de la canalización TFX. Componente de empuje se puede pensar en un proceso de implantación del modelo ML entrenado.

Antes de definir realmente la canalización, primero debemos escribir un código modelo para el componente Trainer.

Escribe el código de entrenamiento del modelo

Crearemos un modelo DNN simple para la clasificación mediante la API de TensorFlow Keras. Este código de entrenamiento modelo se guardará en un archivo separado.

En este tutorial vamos a utilizar Genérico entrenador de TFX que apoyan los modelos basados en Keras. Usted tiene que escribir un archivo de Python que contiene run_fn función, que es el punto de entrada para el Trainer de los componentes.

_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}

from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils

from tfx import v1 as tfx
from tfx_bsl.public import tfxio
from tensorflow_metadata.proto.v0 import schema_pb2

_FEATURE_KEYS = [
    'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'

_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10

# Since we're not generating or creating a schema, we will instead create
# a feature spec.  Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
    **{
        feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
           for feature in _FEATURE_KEYS
       },
    _LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}


def _input_fn(file_pattern: List[str],
              data_accessor: tfx.components.DataAccessor,
              schema: schema_pb2.Schema,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    schema: schema of the input data.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      tfxio.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      schema=schema).repeat()


def _build_keras_model() -> tf.keras.Model:
  """Creates a DNN Keras model for classifying penguin data.

  Returns:
    A Keras Model.
  """
  # The model below is built with Functional API, please refer to
  # https://www.tensorflow.org/guide/keras/overview for all API options.
  inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
  d = keras.layers.concatenate(inputs)
  for _ in range(2):
    d = keras.layers.Dense(8, activation='relu')(d)
  outputs = keras.layers.Dense(3)(d)

  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(
      optimizer=keras.optimizers.Adam(1e-2),
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=[keras.metrics.SparseCategoricalAccuracy()])

  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """

  # This schema is usually either an output of SchemaGen or a manually-curated
  # version provided by pipeline author. A schema can also derived from TFT
  # graph if a Transform component is used. In the case when either is missing,
  # `schema_from_feature_spec` could be used to generate schema from very simple
  # feature_spec, but the schema returned would be very primitive.
  schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)

  train_dataset = _input_fn(
      fn_args.train_files,
      fn_args.data_accessor,
      schema,
      batch_size=_TRAIN_BATCH_SIZE)
  eval_dataset = _input_fn(
      fn_args.eval_files,
      fn_args.data_accessor,
      schema,
      batch_size=_EVAL_BATCH_SIZE)

  model = _build_keras_model()
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps)

  # The result of the training should be saved in `fn_args.serving_model_dir`
  # directory.
  model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py

Ahora ha completado todos los pasos de preparación para construir una canalización TFX.

Escribe una definición de canalización

Definimos una función para crear una tubería TFX. A Pipeline objeto representa una tubería TFX que se puede ejecutar usando uno de los sistemas de tubería orquestación que soportes TFX.

def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
                     module_file: str, serving_model_dir: str,
                     metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a three component penguin pipeline with TFX."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # Uses user-provided Python function that trains a model.
  trainer = tfx.components.Trainer(
      module_file=module_file,
      examples=example_gen.outputs['examples'],
      train_args=tfx.proto.TrainArgs(num_steps=100),
      eval_args=tfx.proto.EvalArgs(num_steps=5))

  # Pushes the model to a filesystem destination.
  pusher = tfx.components.Pusher(
      model=trainer.outputs['model'],
      push_destination=tfx.proto.PushDestination(
          filesystem=tfx.proto.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

  # Following three components will be included in the pipeline.
  components = [
      example_gen,
      trainer,
      pusher,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

Ejecutar la tubería

TFX admite varios orquestadores para ejecutar canalizaciones. En este tutorial vamos a utilizar LocalDagRunner que se incluye en el paquete de carreras y tuberías TFX Python sobre el medio ambiente local. A menudo llamamos a las canalizaciones TFX "DAG", que significa gráfico acíclico dirigido.

LocalDagRunner ofrece iteraciones rápidas para developemnt y depuración. TFX también es compatible con otros orquestadores, incluidos Kubeflow Pipelines y Apache Airflow, que son adecuados para casos de uso de producción.

Ver TFX en la nube AI Plataforma tuberías o TFX flujo de aire Tutorial para aprender más sobre otros sistemas de orquestación.

Ahora vamos a crear un LocalDagRunner y aprobar un Pipeline objeto creado a partir de la función ya definida.

La canalización se ejecuta directamente y puede ver los registros del progreso de la canalización, incluido el entrenamiento del modelo ML.

tfx.orchestration.LocalDagRunner().run(
  _create_pipeline(
      pipeline_name=PIPELINE_NAME,
      pipeline_root=PIPELINE_ROOT,
      data_root=DATA_ROOT,
      module_file=_trainer_module_file,
      serving_model_dir=SERVING_MODEL_DIR,
      metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']).
INFO:absl:User module package has hash fingerprint version a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpof66yu5_/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpcoy7iw8i', '--dist-dir', '/tmp/tmppp9eac6p']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'; target user module is 'penguin_trainer'.
INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Pusher"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.pusher.executor.Executor"
    }
  }
}
executor_specs {
  key: "Trainer"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.trainer.executor.GenericExecutor"
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-simple/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-simple/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-11-09T10:22:23.422700"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-data_s893k6q"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1109 10:22:23.443692 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1109 10:22:23.450397 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1109 10:22:23.456928 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1109 10:22:23.464315 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 1
I1109 10:22:23.514052 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-simple/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1636453342,sum_checksum:1636453342"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'output_data_format': 6, 'input_base': '/tmp/tfx-data_s893k6q', 'output_file_format': 5, 'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1636453342,sum_checksum:1636453342'}, execution_output_uri='pipelines/penguin-simple/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/CsvExampleGen/.system/stateful_working_dir/2021-11-09T10:22:23.422700', tmp_dir='pipelines/penguin-simple/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-11-09T10:22:23.422700"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-data_s893k6q"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-simple"
, pipeline_run_id='2021-11-09T10:22:23.422700')
INFO:absl:Generating examples.
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_trainer.py -> build/lib
installing to /tmp/tmpcoy7iw8i
running install
running install_lib
copying build/lib/penguin_trainer.py -> /tmp/tmpcoy7iw8i
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmpcoy7iw8i/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3.7.egg-info
running install_scripts
creating /tmp/tmpcoy7iw8i/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/WHEEL
creating '/tmp/tmppp9eac6p/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl' and adding '/tmp/tmpcoy7iw8i' to it
adding 'penguin_trainer.py'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/RECORD'
removing /tmp/tmpcoy7iw8i
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-data_s893k6q/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-simple/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1636453342,sum_checksum:1636453342"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.3.3"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component Trainer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-11-09T10:22:23.422700"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-11-09T10:22:23.422700"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1109 10:22:24.733939 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 2
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=2, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-simple/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1636453342,sum_checksum:1636453342"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.3.3"
  }
}
state: LIVE
create_time_since_epoch: 1636453344716
last_update_time_since_epoch: 1636453344716
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model_run/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:Trainer:model_run:0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:Trainer:model:0"
  }
}
, artifact_type: name: "Model"
)]}), exec_properties={'custom_config': 'null', 'module_path': 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl', 'eval_args': '{\n  "num_steps": 5\n}', 'train_args': '{\n  "num_steps": 100\n}'}, execution_output_uri='pipelines/penguin-simple/Trainer/.system/executor_execution/2/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/Trainer/.system/stateful_working_dir/2021-11-09T10:22:23.422700', tmp_dir='pipelines/penguin-simple/Trainer/.system/executor_execution/2/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-11-09T10:22:23.422700"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-11-09T10:22:23.422700"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-simple"
, pipeline_run_id='2021-11-09T10:22:23.422700')
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
INFO:absl:udf_utils.get_fn {'custom_config': 'null', 'module_path': 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl', 'eval_args': '{\n  "num_steps": 5\n}', 'train_args': '{\n  "num_steps": 100\n}'} 'run_fn'
INFO:absl:Installing 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp_dskmvx5', 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl']
Processing ./pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:culmen_length_mm (InputLayer)   [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_depth_mm (InputLayer)    [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:flipper_length_mm (InputLayer)  [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:body_mass_g (InputLayer)        [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 4)            0           culmen_length_mm[0][0]           
INFO:absl:                                                                 culmen_depth_mm[0][0]            
INFO:absl:                                                                 flipper_length_mm[0][0]          
INFO:absl:                                                                 body_mass_g[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 8)            40          concatenate[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 8)            72          dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 3)            27          dense_1[0][0]                    
INFO:absl:==================================================================================================
INFO:absl:Total params: 139
INFO:absl:Trainable params: 139
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
100/100 [==============================] - 1s 3ms/step - loss: 0.4717 - sparse_categorical_accuracy: 0.8330 - val_loss: 0.2040 - val_sparse_categorical_accuracy: 0.9600
2021-11-09 10:22:29.790769: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: pipelines/penguin-simple/Trainer/model/2/Format-Serving/assets
INFO:tensorflow:Assets written to: pipelines/penguin-simple/Trainer/model/2/Format-Serving/assets
INFO:absl:Training complete. Model written to pipelines/penguin-simple/Trainer/model/2/Format-Serving. ModelRun written to pipelines/penguin-simple/Trainer/model_run/2
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 2 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model_run/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:Trainer:model_run:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.3.3"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.3.3"
  }
}
, artifact_type: name: "Model"
)]}) for execution 2
INFO:absl:MetadataStore with DB connection initialized
I1109 10:22:30.354334 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Trainer is finished.
I1109 10:22:30.360141 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-11-09T10:22:23.422700"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-11-09T10:22:23.422700"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-simple\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1109 10:22:30.381621 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'model': [Artifact(artifact: id: 3
type_id: 18
uri: "pipelines/penguin-simple/Trainer/model/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.3.3"
  }
}
state: LIVE
create_time_since_epoch: 1636453350364
last_update_time_since_epoch: 1636453350364
, artifact_type: id: 18
name: "Model"
)]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-simple/Pusher/pushed_model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:Pusher:pushed_model:0"
  }
}
, artifact_type: name: "PushedModel"
)]}), exec_properties={'custom_config': 'null', 'push_destination': '{\n  "filesystem": {\n    "base_directory": "serving_model/penguin-simple"\n  }\n}'}, execution_output_uri='pipelines/penguin-simple/Pusher/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/Pusher/.system/stateful_working_dir/2021-11-09T10:22:23.422700', tmp_dir='pipelines/penguin-simple/Pusher/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-11-09T10:22:23.422700"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-11-09T10:22:23.422700"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-simple\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-simple"
, pipeline_run_id='2021-11-09T10:22:23.422700')
WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline.
INFO:absl:Model version: 1636453350
INFO:absl:Model written to serving path serving_model/penguin-simple/1636453350.
INFO:absl:Model pushed to pipelines/penguin-simple/Pusher/pushed_model/3.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-simple/Pusher/pushed_model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-11-09T10:22:23.422700:Pusher:pushed_model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.3.3"
  }
}
, artifact_type: name: "PushedModel"
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
I1109 10:22:30.415966 23863 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is finished.

Debería ver "INFO: absl: Component Pusher está terminado". al final de los registros si la canalización finalizó correctamente. Debido a Pusher componente es el último componente de la tubería.

El componente empujador empuja el modelo entrenado para la SERVING_MODEL_DIR que es el serving_model/penguin-simple directorio si no ha cambiado las variables en los pasos anteriores. Puede ver el resultado desde el navegador de archivos en el panel del lado izquierdo en Colab, o usando el siguiente comando:

# List files in created model directory.
find {SERVING_MODEL_DIR}
serving_model/penguin-simple
serving_model/penguin-simple/1636453350
serving_model/penguin-simple/1636453350/saved_model.pb
serving_model/penguin-simple/1636453350/variables
serving_model/penguin-simple/1636453350/variables/variables.data-00000-of-00001
serving_model/penguin-simple/1636453350/variables/variables.index
serving_model/penguin-simple/1636453350/keras_metadata.pb
serving_model/penguin-simple/1636453350/assets

Próximos pasos

Puede encontrar más recursos en https://www.tensorflow.org/tfx/tutorials

Por favor, vea Comprender TFX Tuberías para aprender más acerca de los diversos conceptos en TFX.