Halaman ini diterjemahkan oleh Cloud Translation API.
Switch to English

Terjemahan mesin saraf dengan perhatian

Lihat di TensorFlow.org Jalankan di Google Colab Lihat sumber di GitHub Unduh buku catatan

Buku catatan ini melatih model urutan ke urutan (seq2seq) untuk terjemahan bahasa Spanyol ke bahasa Inggris. Ini adalah contoh lanjutan yang mengasumsikan beberapa pengetahuan tentang model urutan ke model urutan.

Setelah melatih model di buku catatan ini, Anda akan bisa memasukkan kalimat bahasa Spanyol, seperti "¿todavia estan en casa?" , dan mengembalikan terjemahan bahasa Inggris: "apakah kamu masih di rumah?"

Kualitas terjemahannya masuk akal untuk sebuah contoh mainan, tetapi plot perhatian yang dihasilkan mungkin lebih menarik. Ini menunjukkan bagian mana dari kalimat masukan yang mendapat perhatian model saat menerjemahkan:

plot perhatian Spanyol-Inggris

import tensorflow as tf

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn.model_selection import train_test_split

import unicodedata
import re
import numpy as np
import os
import io
import time

Unduh dan siapkan dataset

Kami akan menggunakan kumpulan data bahasa yang disediakan oleh http://www.manythings.org/anki/ Kumpulan data ini berisi pasangan terjemahan bahasa dalam format:

May I borrow this book? ¿Puedo tomar prestado este libro?

Ada berbagai bahasa yang tersedia, tetapi kami akan menggunakan kumpulan data Inggris-Spanyol. Untuk kenyamanan, kami telah menghosting salinan set data ini di Google Cloud, tetapi Anda juga dapat mendownload salinan Anda sendiri. Setelah mengunduh dataset, berikut adalah langkah-langkah yang akan kami lakukan untuk menyiapkan data:

  1. Tambahkan tanda awal dan akhir untuk setiap kalimat.
  2. Bersihkan kalimat dengan menghapus karakter khusus.
  3. Buat indeks kata dan indeks kata terbalik (kamus memetakan dari kata → id dan id → kata).
  4. Padatkan setiap kalimat dengan panjang maksimum.
# Download the file
path_to_zip = tf.keras.utils.get_file(
    'spa-eng.zip', origin='http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip',
    extract=True)

path_to_file = os.path.dirname(path_to_zip)+"/spa-eng/spa.txt"
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip
2646016/2638744 [==============================] - 0s 0us/step

# Converts the unicode file to ascii
def unicode_to_ascii(s):
  return ''.join(c for c in unicodedata.normalize('NFD', s)
      if unicodedata.category(c) != 'Mn')


def preprocess_sentence(w):
  w = unicode_to_ascii(w.lower().strip())

  # creating a space between a word and the punctuation following it
  # eg: "he is a boy." => "he is a boy ."
  # Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-white-spaces-keeping-punctuation
  w = re.sub(r"([?.!,¿])", r" \1 ", w)
  w = re.sub(r'[" "]+', " ", w)

  # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",")
  w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w)

  w = w.strip()

  # adding a start and an end token to the sentence
  # so that the model know when to start and stop predicting.
  w = '<start> ' + w + ' <end>'
  return w
en_sentence = u"May I borrow this book?"
sp_sentence = u"¿Puedo tomar prestado este libro?"
print(preprocess_sentence(en_sentence))
print(preprocess_sentence(sp_sentence).encode('utf-8'))
<start> may i borrow this book ? <end>
b'<start> \xc2\xbf puedo tomar prestado este libro ? <end>'

# 1. Remove the accents
# 2. Clean the sentences
# 3. Return word pairs in the format: [ENGLISH, SPANISH]
def create_dataset(path, num_examples):
  lines = io.open(path, encoding='UTF-8').read().strip().split('\n')

  word_pairs = [[preprocess_sentence(w) for w in l.split('\t')]  for l in lines[:num_examples]]

  return zip(*word_pairs)
en, sp = create_dataset(path_to_file, None)
print(en[-1])
print(sp[-1])
<start> if you want to sound like a native speaker , you must be willing to practice saying the same sentence over and over in the same way that banjo players practice the same phrase over and over until they can play it correctly and at the desired tempo . <end>
<start> si quieres sonar como un hablante nativo , debes estar dispuesto a practicar diciendo la misma frase una y otra vez de la misma manera en que un musico de banjo practica el mismo fraseo una y otra vez hasta que lo puedan tocar correctamente y en el tiempo esperado . <end>

def tokenize(lang):
  lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(
      filters='')
  lang_tokenizer.fit_on_texts(lang)

  tensor = lang_tokenizer.texts_to_sequences(lang)

  tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor,
                                                         padding='post')

  return tensor, lang_tokenizer
def load_dataset(path, num_examples=None):
  # creating cleaned input, output pairs
  targ_lang, inp_lang = create_dataset(path, num_examples)

  input_tensor, inp_lang_tokenizer = tokenize(inp_lang)
  target_tensor, targ_lang_tokenizer = tokenize(targ_lang)

  return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer

Batasi ukuran kumpulan data untuk bereksperimen lebih cepat (opsional)

Pelatihan tentang kumpulan data lengkap> 100.000 kalimat akan membutuhkan waktu lama. Untuk berlatih lebih cepat, kami dapat membatasi ukuran kumpulan data menjadi 30.000 kalimat (tentu saja, kualitas terjemahan menurun dengan lebih sedikit data):

# Try experimenting with the size of that dataset
num_examples = 30000
input_tensor, target_tensor, inp_lang, targ_lang = load_dataset(path_to_file, num_examples)

# Calculate max_length of the target tensors
max_length_targ, max_length_inp = target_tensor.shape[1], input_tensor.shape[1]
# Creating training and validation sets using an 80-20 split
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, target_tensor, test_size=0.2)

# Show length
print(len(input_tensor_train), len(target_tensor_train), len(input_tensor_val), len(target_tensor_val))
24000 24000 6000 6000

def convert(lang, tensor):
  for t in tensor:
    if t!=0:
      print ("%d ----> %s" % (t, lang.index_word[t]))
print ("Input Language; index to word mapping")
convert(inp_lang, input_tensor_train[0])
print ()
print ("Target Language; index to word mapping")
convert(targ_lang, target_tensor_train[0])
Input Language; index to word mapping
1 ----> <start>
6379 ----> dese
395 ----> vuelta
32 ----> ,
22 ----> por
50 ----> favor
3 ----> .
2 ----> <end>

Target Language; index to word mapping
1 ----> <start>
56 ----> please
205 ----> turn
197 ----> over
3 ----> .
2 ----> <end>

Buat set data tf.data

BUFFER_SIZE = len(input_tensor_train)
BATCH_SIZE = 64
steps_per_epoch = len(input_tensor_train)//BATCH_SIZE
embedding_dim = 256
units = 1024
vocab_inp_size = len(inp_lang.word_index)+1
vocab_tar_size = len(targ_lang.word_index)+1

dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
example_input_batch, example_target_batch = next(iter(dataset))
example_input_batch.shape, example_target_batch.shape
(TensorShape([64, 16]), TensorShape([64, 11]))

Tulis model encoder dan decoder

Implementasikan model encoder-decoder dengan perhatian yang dapat Anda baca di tutorial TensorFlow Neural Machine Translation (seq2seq) . Contoh ini menggunakan satu set API yang lebih baru. Notebook ini mengimplementasikan persamaan perhatian dari tutorial seq2seq. Diagram berikut menunjukkan bahwa setiap kata masukan diberi bobot oleh mekanisme perhatian yang kemudian digunakan oleh decoder untuk memprediksi kata berikutnya dalam kalimat. Gambar dan rumus di bawah ini merupakan contoh mekanisme atensi dari makalah Luong .

mekanisme perhatian

Masukan dimasukkan melalui model encoder yang memberi kita keluaran encoder dari bentuk (batch_size, max_length, hidden_size) dan keadaan bentuk tersembunyi encoder (batch_size, hidden_size) .

Berikut persamaan yang diimplementasikan:

persamaan perhatian 0persamaan perhatian 1

Tutorial ini menggunakan perhatian Bahdanau untuk pembuat enkode. Mari kita putuskan notasi sebelum menulis bentuk yang disederhanakan:

  • FC = Lapisan terhubung penuh (padat)
  • EO = Keluaran encoder
  • H = keadaan tersembunyi
  • X = masukan ke decoder

Dan pseudo-code:

  • score = FC(tanh(FC(EO) + FC(H)))
  • attention weights = softmax(score, axis = 1) . Softmax secara default diterapkan pada sumbu terakhir tetapi di sini kami ingin menerapkannya pada sumbu pertama , karena bentuk skornya adalah (batch_size, max_length, hidden_size) . Max_length adalah panjang input kita. Karena kami mencoba untuk menetapkan bobot ke setiap input, softmax harus diterapkan pada sumbu itu.
  • context vector = sum(attention weights * EO, axis = 1) . Alasan yang sama seperti di atas untuk memilih sumbu sebagai 1.
  • embedding output = Input ke decoder X dilewatkan melalui lapisan embedding.
  • merged vector = concat(embedding output, context vector)
  • Vektor gabungan ini kemudian diberikan ke GRU

Bentuk dari semua vektor di setiap langkah telah ditentukan dalam komentar di kode:

class Encoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):
    super(Encoder, self).__init__()
    self.batch_sz = batch_sz
    self.enc_units = enc_units
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(self.enc_units,
                                   return_sequences=True,
                                   return_state=True,
                                   recurrent_initializer='glorot_uniform')

  def call(self, x, hidden):
    x = self.embedding(x)
    output, state = self.gru(x, initial_state = hidden)
    return output, state

  def initialize_hidden_state(self):
    return tf.zeros((self.batch_sz, self.enc_units))
encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)

# sample input
sample_hidden = encoder.initialize_hidden_state()
sample_output, sample_hidden = encoder(example_input_batch, sample_hidden)
print ('Encoder output shape: (batch size, sequence length, units) {}'.format(sample_output.shape))
print ('Encoder Hidden state shape: (batch size, units) {}'.format(sample_hidden.shape))
Encoder output shape: (batch size, sequence length, units) (64, 16, 1024)
Encoder Hidden state shape: (batch size, units) (64, 1024)

class BahdanauAttention(tf.keras.layers.Layer):
  def __init__(self, units):
    super(BahdanauAttention, self).__init__()
    self.W1 = tf.keras.layers.Dense(units)
    self.W2 = tf.keras.layers.Dense(units)
    self.V = tf.keras.layers.Dense(1)

  def call(self, query, values):
    # query hidden state shape == (batch_size, hidden size)
    # query_with_time_axis shape == (batch_size, 1, hidden size)
    # values shape == (batch_size, max_len, hidden size)
    # we are doing this to broadcast addition along the time axis to calculate the score
    query_with_time_axis = tf.expand_dims(query, 1)

    # score shape == (batch_size, max_length, 1)
    # we get 1 at the last axis because we are applying score to self.V
    # the shape of the tensor before applying self.V is (batch_size, max_length, units)
    score = self.V(tf.nn.tanh(
        self.W1(query_with_time_axis) + self.W2(values)))

    # attention_weights shape == (batch_size, max_length, 1)
    attention_weights = tf.nn.softmax(score, axis=1)

    # context_vector shape after sum == (batch_size, hidden_size)
    context_vector = attention_weights * values
    context_vector = tf.reduce_sum(context_vector, axis=1)

    return context_vector, attention_weights
attention_layer = BahdanauAttention(10)
attention_result, attention_weights = attention_layer(sample_hidden, sample_output)

print("Attention result shape: (batch size, units) {}".format(attention_result.shape))
print("Attention weights shape: (batch_size, sequence_length, 1) {}".format(attention_weights.shape))
Attention result shape: (batch size, units) (64, 1024)
Attention weights shape: (batch_size, sequence_length, 1) (64, 16, 1)

class Decoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
    super(Decoder, self).__init__()
    self.batch_sz = batch_sz
    self.dec_units = dec_units
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(self.dec_units,
                                   return_sequences=True,
                                   return_state=True,
                                   recurrent_initializer='glorot_uniform')
    self.fc = tf.keras.layers.Dense(vocab_size)

    # used for attention
    self.attention = BahdanauAttention(self.dec_units)

  def call(self, x, hidden, enc_output):
    # enc_output shape == (batch_size, max_length, hidden_size)
    context_vector, attention_weights = self.attention(hidden, enc_output)

    # x shape after passing through embedding == (batch_size, 1, embedding_dim)
    x = self.embedding(x)

    # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
    x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

    # passing the concatenated vector to the GRU
    output, state = self.gru(x)

    # output shape == (batch_size * 1, hidden_size)
    output = tf.reshape(output, (-1, output.shape[2]))

    # output shape == (batch_size, vocab)
    x = self.fc(output)

    return x, state, attention_weights
decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE)

sample_decoder_output, _, _ = decoder(tf.random.uniform((BATCH_SIZE, 1)),
                                      sample_hidden, sample_output)

print ('Decoder output shape: (batch_size, vocab size) {}'.format(sample_decoder_output.shape))
Decoder output shape: (batch_size, vocab size) (64, 4935)

Tentukan pengoptimal dan fungsi kerugian

optimizer = tf.keras.optimizers.Adam()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True, reduction='none')

def loss_function(real, pred):
  mask = tf.math.logical_not(tf.math.equal(real, 0))
  loss_ = loss_object(real, pred)

  mask = tf.cast(mask, dtype=loss_.dtype)
  loss_ *= mask

  return tf.reduce_mean(loss_)

Checkpoints (Penghematan berbasis objek)

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
                                 encoder=encoder,
                                 decoder=decoder)

Latihan

  1. Teruskan masukan melalui pembuat enkode yang mengembalikan keluaran pembuat enkode dan status tersembunyi pembuat enkode .
  2. Keluaran pembuat enkode, status tersembunyi pembuat enkode, dan masukan dekoder (yang merupakan token awal ) diteruskan ke dekoder.
  3. Dekoder mengembalikan prediksi dan status tersembunyi dekoder .
  4. Status tersembunyi decoder kemudian diteruskan kembali ke model dan prediksi digunakan untuk menghitung kerugian.
  5. Gunakan pemaksaan guru untuk memutuskan masukan berikutnya ke decoder.
  6. Pemaksaan guru adalah teknik di mana kata target diteruskan sebagai masukan berikutnya ke decoder.
  7. Langkah terakhir adalah menghitung gradien dan menerapkannya ke pengoptimal dan backpropagate.
@tf.function
def train_step(inp, targ, enc_hidden):
  loss = 0

  with tf.GradientTape() as tape:
    enc_output, enc_hidden = encoder(inp, enc_hidden)

    dec_hidden = enc_hidden

    dec_input = tf.expand_dims([targ_lang.word_index['<start>']] * BATCH_SIZE, 1)

    # Teacher forcing - feeding the target as the next input
    for t in range(1, targ.shape[1]):
      # passing enc_output to the decoder
      predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output)

      loss += loss_function(targ[:, t], predictions)

      # using teacher forcing
      dec_input = tf.expand_dims(targ[:, t], 1)

  batch_loss = (loss / int(targ.shape[1]))

  variables = encoder.trainable_variables + decoder.trainable_variables

  gradients = tape.gradient(loss, variables)

  optimizer.apply_gradients(zip(gradients, variables))

  return batch_loss
EPOCHS = 10

for epoch in range(EPOCHS):
  start = time.time()

  enc_hidden = encoder.initialize_hidden_state()
  total_loss = 0

  for (batch, (inp, targ)) in enumerate(dataset.take(steps_per_epoch)):
    batch_loss = train_step(inp, targ, enc_hidden)
    total_loss += batch_loss

    if batch % 100 == 0:
      print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
                                                   batch,
                                                   batch_loss.numpy()))
  # saving (checkpoint) the model every 2 epochs
  if (epoch + 1) % 2 == 0:
    checkpoint.save(file_prefix = checkpoint_prefix)

  print('Epoch {} Loss {:.4f}'.format(epoch + 1,
                                      total_loss / steps_per_epoch))
  print('Time taken for 1 epoch {} sec\n'.format(time.time() - start))
Epoch 1 Batch 0 Loss 4.7113
Epoch 1 Batch 100 Loss 2.1051
Epoch 1 Batch 200 Loss 1.9095
Epoch 1 Batch 300 Loss 1.7646
Epoch 1 Loss 2.0334
Time taken for 1 epoch 26.513352870941162 sec

Epoch 2 Batch 0 Loss 1.4994
Epoch 2 Batch 100 Loss 1.4381
Epoch 2 Batch 200 Loss 1.3774
Epoch 2 Batch 300 Loss 1.1783
Epoch 2 Loss 1.3686
Time taken for 1 epoch 15.74858546257019 sec

Epoch 3 Batch 0 Loss 0.9827
Epoch 3 Batch 100 Loss 1.0305
Epoch 3 Batch 200 Loss 0.9073
Epoch 3 Batch 300 Loss 0.8466
Epoch 3 Loss 0.9339
Time taken for 1 epoch 15.360853910446167 sec

Epoch 4 Batch 0 Loss 0.5953
Epoch 4 Batch 100 Loss 0.6024
Epoch 4 Batch 200 Loss 0.6550
Epoch 4 Batch 300 Loss 0.6959
Epoch 4 Loss 0.6273
Time taken for 1 epoch 15.659878015518188 sec

Epoch 5 Batch 0 Loss 0.4362
Epoch 5 Batch 100 Loss 0.4403
Epoch 5 Batch 200 Loss 0.5202
Epoch 5 Batch 300 Loss 0.3749
Epoch 5 Loss 0.4293
Time taken for 1 epoch 15.344685077667236 sec

Epoch 6 Batch 0 Loss 0.3615
Epoch 6 Batch 100 Loss 0.2462
Epoch 6 Batch 200 Loss 0.2649
Epoch 6 Batch 300 Loss 0.3645
Epoch 6 Loss 0.2965
Time taken for 1 epoch 15.627461910247803 sec

Epoch 7 Batch 0 Loss 0.2720
Epoch 7 Batch 100 Loss 0.1868
Epoch 7 Batch 200 Loss 0.2354
Epoch 7 Batch 300 Loss 0.2372
Epoch 7 Loss 0.2145
Time taken for 1 epoch 15.387472867965698 sec

Epoch 8 Batch 0 Loss 0.1477
Epoch 8 Batch 100 Loss 0.1718
Epoch 8 Batch 200 Loss 0.1659
Epoch 8 Batch 300 Loss 0.1612
Epoch 8 Loss 0.1623
Time taken for 1 epoch 15.627415657043457 sec

Epoch 9 Batch 0 Loss 0.0871
Epoch 9 Batch 100 Loss 0.1062
Epoch 9 Batch 200 Loss 0.1450
Epoch 9 Batch 300 Loss 0.1639
Epoch 9 Loss 0.1268
Time taken for 1 epoch 15.357704162597656 sec

Epoch 10 Batch 0 Loss 0.0960
Epoch 10 Batch 100 Loss 0.0805
Epoch 10 Batch 200 Loss 0.1251
Epoch 10 Batch 300 Loss 0.1206
Epoch 10 Loss 0.1037
Time taken for 1 epoch 15.646350383758545 sec


Menterjemahkan

  • Fungsi evaluasi mirip dengan loop pelatihan, kecuali kita tidak menggunakan penggerak guru di sini. Masukan ke decoder pada setiap langkah waktu adalah prediksi sebelumnya bersama dengan status tersembunyi dan keluaran encoder.
  • Berhenti memprediksi saat model memprediksi token akhir .
  • Dan simpan bobot perhatian untuk setiap langkah waktu .
def evaluate(sentence):
  attention_plot = np.zeros((max_length_targ, max_length_inp))

  sentence = preprocess_sentence(sentence)

  inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
  inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
                                                         maxlen=max_length_inp,
                                                         padding='post')
  inputs = tf.convert_to_tensor(inputs)

  result = ''

  hidden = [tf.zeros((1, units))]
  enc_out, enc_hidden = encoder(inputs, hidden)

  dec_hidden = enc_hidden
  dec_input = tf.expand_dims([targ_lang.word_index['<start>']], 0)

  for t in range(max_length_targ):
    predictions, dec_hidden, attention_weights = decoder(dec_input,
                                                         dec_hidden,
                                                         enc_out)

    # storing the attention weights to plot later on
    attention_weights = tf.reshape(attention_weights, (-1, ))
    attention_plot[t] = attention_weights.numpy()

    predicted_id = tf.argmax(predictions[0]).numpy()

    result += targ_lang.index_word[predicted_id] + ' '

    if targ_lang.index_word[predicted_id] == '<end>':
      return result, sentence, attention_plot

    # the predicted ID is fed back into the model
    dec_input = tf.expand_dims([predicted_id], 0)

  return result, sentence, attention_plot
# function for plotting the attention weights
def plot_attention(attention, sentence, predicted_sentence):
  fig = plt.figure(figsize=(10,10))
  ax = fig.add_subplot(1, 1, 1)
  ax.matshow(attention, cmap='viridis')

  fontdict = {'fontsize': 14}

  ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90)
  ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict)

  ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
  ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

  plt.show()
def translate(sentence):
  result, sentence, attention_plot = evaluate(sentence)

  print('Input: %s' % (sentence))
  print('Predicted translation: {}'.format(result))

  attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))]
  plot_attention(attention_plot, sentence.split(' '), result.split(' '))

Kembalikan pos pemeriksaan dan tes terbaru

# restoring the latest checkpoint in checkpoint_dir
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f3f4a04af60>
translate(u'hace mucho frio aqui.')
Input: <start> hace mucho frio aqui . <end>
Predicted translation: it s very cold here . <end> 

png

translate(u'esta es mi vida.')
Input: <start> esta es mi vida . <end>
Predicted translation: this is my life . <end> 

png

translate(u'¿todavia estan en casa?')
Input: <start> ¿ todavia estan en casa ? <end>
Predicted translation: are you still at home ? <end> 

png

# wrong translation
translate(u'trata de averiguarlo.')
Input: <start> trata de averiguarlo . <end>
Predicted translation: try to figure it out . <end> 

png

Langkah selanjutnya

  • Unduh kumpulan data yang berbeda untuk bereksperimen dengan terjemahan, misalnya, Inggris ke Jerman, atau Inggris ke Prancis.
  • Bereksperimenlah dengan pelatihan pada kumpulan data yang lebih besar, atau gunakan lebih banyak waktu