RSVP for your your local TensorFlow Everywhere event today!


Computes the triplet loss with semi-hard negative mining.

Used in the notebooks

Used in the tutorials

The loss encourages the positive distances (between a pair of embeddings with the same labels) to be smaller than the minimum negative distance among which are at least greater than the positive distance plus the margin constant (called semi-hard negative) in the mini-batch. If no such negative exists, uses the largest negative distance instead. See:

We expect labels y_true to be provided as 1-D integer Tensor with shape [batch_size] of multi-class integer labels. And embeddings y_pred must be 2-D float Tensor of l2 normalized embedding vectors.

margin Float, margin term in the loss definition. Default value is 1.0.
name Optional name for the op.



Instantiates a Loss from its config (output of get_config()).

config Output of get_config().

A Loss instance.


View source

Returns the config dictionary for a Loss instance.


Invokes the Loss instance.

y_true Ground truth values. shape = [batch_size, d0, .. dN], except sparse loss functions such as sparse categorical crossentropy where shape = [batch_size, d0, .. dN-1]
y_pred The predicted values. shape = [batch_size, d0, .. dN]
sample_weight Optional sample_weight acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If sample_weight is a tensor of size [batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in the sample_weight vector. If the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be broadcasted to this shape), then each loss element of y_pred is scaled by the corresponding value of sample_weight. (Note ondN-1: all loss functions reduce by 1 dimension, usually axis=-1.)

Weighted loss float Tensor. If reduction is NONE, this has shape [batch_size, d0, .. dN-1]; otherwise, it is scalar. (Note dN-1 because all loss functions reduce by 1 dimension, usually axis=-1.)

ValueError If the shape of sample_weight is invalid.