![]() |
A LearningRateSchedule that uses cyclical schedule.
Inherits From: CyclicalLearningRate
tfa.optimizers.ExponentialCyclicalLearningRate(
initial_learning_rate: Union[FloatTensorLike, Callable],
maximal_learning_rate: Union[FloatTensorLike, Callable],
step_size: tfa.types.FloatTensorLike
,
scale_mode: str = 'iterations',
gamma: tfa.types.FloatTensorLike
= 1.0,
name: str = 'ExponentialCyclicalLearningRate'
)
Args | |
---|---|
initial_learning_rate
|
A scalar float32 or float64 Tensor or
a Python number. The initial learning rate.
|
maximal_learning_rate
|
A scalar float32 or float64 Tensor or
a Python number. The maximum learning rate.
|
step_size
|
A scalar float32 or float64 Tensor or a
Python number. Step size denotes the number of training iterations it takes to get to maximal_learning_rate
|
scale_mode
|
['cycle', 'iterations']. Mode to apply during cyclic schedule |
gamma
|
A scalar float32 or float64 Tensor or a
Python number. Gamma value.
|
name
|
(Optional) Name for the operation. |
Methods
from_config
@classmethod
from_config( config )
Instantiates a LearningRateSchedule
from its config.
Args | |
---|---|
config
|
Output of get_config() .
|
Returns | |
---|---|
A LearningRateSchedule instance.
|
get_config
get_config()
__call__
__call__(
step
)
Call self as a function.