tfa.rnn.LayerNormSimpleRNNCell

View source on GitHub

Cell class for LayerNormSimpleRNN.

References:

[1] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer Normalization." ArXiv:1607.06450 [Cs, Stat], July 21, 2016. http://arxiv.org/abs/1607.06450

Arguments:

  • units: Positive integer, dimensionality of the output space.
  • activation: Activation function to use. Default: hyperbolic tangent (tanh). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x).
  • use_bias: Boolean, (default True), whether the layer uses a bias vector.
  • layernorm_epsilon: Float, (default 1e-5), Small float added to variance to avoid dividing by zero.
  • kernel_initializer: Initializer for the kernel weights matrix, used for the linear transformation of the inputs. Default: glorot_uniform.
  • recurrent_initializer: Initializer for the recurrent_kernel weights matrix, used for the linear transformation of the recurrent state. Default: orthogonal.
  • bias_initializer: Initializer for the bias vector (use_bias=True). Default: zeros.
  • gamma_initializer: Initializer for the gamma vector of the layer normalization layer. Default: ones.
  • kernel_regularizer: Regularizer function applied to the kernel weights matrix. Default: None.
  • recurrent_regularizer: Regularizer function applied to the recurrent_kernel weights matrix. Default: None.
  • bias_regularizer: Regularizer function applied to the bias vector (use_bias=True). Default: None.
  • gamma_regularizer: Regularizer function applied to the gamma vector of the layer normalization layer. Default: None.
  • kernel_constraint: Constraint function applied to the kernel weights matrix. Default: None.
  • recurrent_constraint: Constraint function applied to the recurrent_kernel weights matrix. Default: None.
  • bias_constraint: Constraint function applied to the bias vector (use_bias=True). Default: None.
  • gamma_constraint: Constraint function applied to the gamma vector of the layer normalization layer. Default: None.
  • dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
  • recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.

Call arguments:

  • inputs: A 2D tensor, with shape of [batch, feature].
  • states: A 2D tensor with shape of [batch, units], which is the state from the previous time step. For timestep 0, the initial state provided by the user will be feed to cell.
  • training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when dropout or recurrent_dropout is used.

Examples:

import numpy as np
import tensorflow.keras as keras
import tensorflow_addons as tfa

inputs = np.random.random([32, 10, 8]).astype(np.float32)
rnn = keras.layers.RNN(tfa.rnn.LayerNormSimpleRNNCell(4))

output = rnn(inputs)  # The output has shape `[32, 4]`.

rnn = keras.layers.RNN(
    tfa.rnn.LayerNormSimpleRNNCell(4),
    return_sequences=True,
    return_state=True)

# whole_sequence_output has shape `[32, 10, 4]`.
# final_state has shape `[32, 4]`.
whole_sequence_output, final_state = rnn(inputs)

Attributes:

  • activity_regularizer: Optional regularizer function for the output of this layer.
  • dtype
  • dynamic
  • input: Retrieves the input tensor(s) of a layer.

    Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.

  • input_mask: Retrieves the input mask tensor(s) of a layer.

    Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

  • input_shape: Retrieves the input shape(s) of a layer.

    Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape.

  • input_spec

  • losses: Losses which are associated with this Layer.

    Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing losses under a tf.GradientTape will propagate gradients back to the corresponding variables.

  • metrics

  • name: Returns the name of this module as passed or determined in the ctor.

    NOTE: This is not the same as the self.name_scope.name which includes parent module names.

  • name_scope: Returns a tf.name_scope instance for this class.

  • non_trainable_variables

  • non_trainable_weights

  • output: Retrieves the output tensor(s) of a layer.

    Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.

  • output_mask: Retrieves the output mask tensor(s) of a layer.

    Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

  • output_shape: Retrieves the output shape(s) of a layer.

    Only applicable if the layer has one output, or if all outputs have the same shape.

  • submodules: Sequence of all sub-modules.

    Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
assert list(a.submodules) == [b, c]
assert list(b.submodules) == [c]
assert list(c.submodules) == []
  • trainable
  • trainable_variables: Sequence of trainable variables owned by this module and its submodules.

  • trainable_weights

  • updates

  • variables: Returns the list of all layer variables/weights.

    Alias of self.weights.

  • weights: Returns the list of all layer variables/weights.

Methods

__call__

Wraps call, applying pre- and post-processing steps.

Arguments:

  • inputs: input tensor(s).
  • *args: additional positional arguments to be passed to self.call.
  • **kwargs: additional keyword arguments to be passed to self.call.

Returns:

Output tensor(s).

Note:

  • The following optional keyword arguments are reserved for specific uses:
    • training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
    • mask: Boolean input mask.
  • If the layer's call method takes a mask argument (as some Keras layers do), its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support.

Raises:

  • ValueError: if the layer's call method returns None (an invalid value).

build

View source

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Arguments:

  • input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

compute_mask

Computes an output mask tensor.

Arguments:

  • inputs: Tensor or list of tensors.
  • mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape

Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will later be used with inputs that match the input shape provided here.

Arguments:

  • input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns:

An input shape tuple.

count_params

Count the total number of scalars composing the weights.

Returns:

An integer count.

Raises:

  • ValueError: if the layer isn't yet built (in which case its weights aren't yet defined).

from_config

Creates a layer from its config.

This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).

Arguments:

  • config: A Python dictionary, typically the output of get_config.

Returns:

A layer instance.

get_config

View source

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Returns:

Python dictionary.

get_dropout_mask_for_cell

Get the dropout mask for RNN cell's input.

It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell.

Args:

  • inputs: The input tensor whose shape will be used to generate dropout mask.
  • training: Boolean tensor, whether its in training mode, dropout will be ignored in non-training mode.
  • count: Int, how many dropout mask will be generated. It is useful for cell that has internal weights fused together.

Returns:

List of mask tensor, generated or cached mask based on context.

get_initial_state

get_input_at

Retrieves the input tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple inputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_input_mask_at

Retrieves the input mask tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple inputs).

get_input_shape_at

Retrieves the input shape(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple inputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_losses_for

Retrieves losses relevant to a specific set of inputs.

Arguments:

  • inputs: Input tensor or list/tuple of input tensors.

Returns:

List of loss tensors of the layer that depend on inputs.

get_output_at

Retrieves the output tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple outputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_output_mask_at

Retrieves the output mask tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple outputs).

get_output_shape_at

Retrieves the output shape(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple outputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_recurrent_dropout_mask_for_cell

Get the recurrent dropout mask for RNN cell.

It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell.

Args:

  • inputs: The input tensor whose shape will be used to generate dropout mask.
  • training: Boolean tensor, whether its in training mode, dropout will be ignored in non-training mode.
  • count: Int, how many dropout mask will be generated. It is useful for cell that has internal weights fused together.

Returns:

List of mask tensor, generated or cached mask based on context.

get_updates_for

Retrieves updates relevant to a specific set of inputs.

Arguments:

  • inputs: Input tensor or list/tuple of input tensors.

Returns:

List of update ops of the layer that depend on inputs.

get_weights

Returns the current weights of the layer.

Returns:

Weights values as a list of numpy arrays.

reset_dropout_mask

Reset the cached dropout masks if any.

This is important for the RNN layer to invoke this in it call() method so that the cached mask is cleared before calling the cell.call(). The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch.

reset_recurrent_dropout_mask

Reset the cached recurrent dropout masks if any.

This is important for the RNN layer to invoke this in it call() method so that the cached mask is cleared before calling the cell.call(). The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch.

set_weights

Sets the weights of the layer, from Numpy arrays.

Arguments:

  • weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).

Raises:

  • ValueError: If the provided weights list does not match the layer's specifications.

with_name_scope

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 64]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([8, 32]))
# ==> <tf.Tensor: ...>
mod.w
# ==> <tf.Variable ...'my_module/w:0'>

Args:

  • method: The method to wrap.

Returns:

The original method wrapped such that it enters the module's name scope.