View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
Overview
TensorFlow uses both graph and eager executions to execute computations. A tf.Graph
contains a set of tf.Operation
objects (ops) which represent units of computation and tf.Tensor
objects which represent the units of data that flow between ops.
Grappler is the default graph optimization system in the TensorFlow runtime. Grappler applies optimizations in graph mode (within tf.function
) to improve the performance of your TensorFlow computations through graph simplifications and other high-level optimizations such as inlining function bodies to enable inter-procedural optimizations. Optimizing the tf.Graph
also reduces the device peak memory usage and improves hardware utilization by optimizing the mapping of graph nodes to compute resources.
Use tf.config.optimizer.set_experimental_options()
for finer control over your tf.Graph
optimizations.
Available graph optimizers
Grappler performs graph optimizations through a top-level driver called the MetaOptimizer
. The following graph optimizers are available with TensorFlow:
- Constant folding optimizer - Statically infers the value of tensors when possible by folding constant nodes in the graph and materializes the result using constants.
- Arithmetic optimizer - Simplifies arithmetic operations by eliminating common subexpressions and simplifying arithmetic statements.
- Layout optimizer - Optimizes tensor layouts to execute data format dependent operations such as convolutions more efficiently.
- Remapper optimizer - Remaps subgraphs onto more efficient implementations by replacing commonly occurring subgraphs with optimized fused monolithic kernels.
- Memory optimizer - Analyzes the graph to inspect the peak memory usage for each operation and inserts CPU-GPU memory copy operations for swapping GPU memory to CPU to reduce the peak memory usage.
- Dependency optimizer - Removes or rearranges control dependencies to shorten the critical path for a model step or enables other optimizations. Also removes nodes that are effectively no-ops such as Identity.
- Pruning optimizer - Prunes nodes that have no effect on the output from the graph. It is usually run first to reduce the size of the graph and speed up processing in other Grappler passes.
- Function optimizer - Optimizes the function library of a TensorFlow program and inlines function bodies to enable other inter-procedural optimizations.
- Shape optimizer - Optimizes subgraphs that operate on shape and shape related information.
- Autoparallel optimizer - Automatically parallelizes graphs by splitting along the batch dimension. This optimizer is turned OFF by default.
- Loop optimizer - Optimizes the graph control flow by hoisting loop-invariant subgraphs out of loops and by removing redundant stack operations in loops. Also optimizes loops with statically known trip counts and removes statically known dead branches in conditionals.
- Scoped allocator optimizer - Introduces scoped allocators to reduce data movement and to consolidate some operations.
- Pin to host optimizer - Swaps small operations onto the CPU. This optimizer is turned OFF by default.
- Auto mixed precision optimizer - Converts data types to float16 where applicable to improve performance. Currently applies only to GPUs.
- Debug stripper - Strips nodes related to debugging operations such as
tf.debugging.Assert
,tf.debugging.check_numerics
, andtf.print
from the graph. This optimizer is turned OFF by default.
Setup
import numpy as np
import timeit
import traceback
import contextlib
import tensorflow as tf
2024-08-15 03:12:59.927808: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-08-15 03:12:59.949750: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-08-15 03:12:59.956309: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
Create a context manager to easily toggle optimizer states.
@contextlib.contextmanager
def options(options):
old_opts = tf.config.optimizer.get_experimental_options()
tf.config.optimizer.set_experimental_options(options)
try:
yield
finally:
tf.config.optimizer.set_experimental_options(old_opts)
Compare execution performance with and without Grappler
TensorFlow 2 and beyond executes eagerly by default. Use tf.function
to switch the default execution to Graph mode. Grappler runs automatically in the background to apply the graph optimizations above and improve execution performance.
Constant folding optimizer
As a preliminary example, consider a function which performs operations on constants and returns an output.
def test_function_1():
@tf.function
def simple_function(input_arg):
print('Tracing!')
a = tf.constant(np.random.randn(2000,2000), dtype = tf.float32)
c = a
for n in range(50):
c = c@a
return tf.reduce_mean(c+input_arg)
return simple_function
Turn off the constant folding optimizer and execute the function:
with options({'constant_folding': False}):
print(tf.config.optimizer.get_experimental_options())
simple_function = test_function_1()
# Trace once
x = tf.constant(2.2)
simple_function(x)
print("Vanilla execution:", timeit.timeit(lambda: simple_function(x), number = 1), "s")
{'constant_folding': False, 'disable_model_pruning': False, 'disable_meta_optimizer': False} Tracing! WARNING: All log messages before absl::InitializeLog() is called are written to STDERR I0000 00:00:1723691582.434188 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.437734 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.441381 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.445068 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.456350 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.459515 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.463004 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.466403 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.469309 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.472420 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.475929 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691582.479468 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.708458 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.710634 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.712636 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.715095 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.717158 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.719156 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.721073 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.723067 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.725320 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.727293 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.729201 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.731224 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.770293 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.772368 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.774328 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.776327 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.778290 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.780313 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.782237 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.784245 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.786123 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.788563 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.790901 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 I0000 00:00:1723691583.793358 201523 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 Vanilla execution: 0.0019207369996365742 s
Enable the constant folding optimizer and execute the function again to observe a speed-up in function execution.
with options({'constant_folding': True}):
print(tf.config.optimizer.get_experimental_options())
simple_function = test_function_1()
# Trace once
x = tf.constant(2.2)
simple_function(x)
print("Constant folded execution:", timeit.timeit(lambda: simple_function(x), number = 1), "s")
{'constant_folding': True, 'disable_model_pruning': False, 'disable_meta_optimizer': False} Tracing! Constant folded execution: 0.0007975139997142833 s
Debug stripper optimizer
Consider a simple function that checks the numeric value of its input argument and returns it.
def test_function_2():
@tf.function
def simple_func(input_arg):
output = input_arg
tf.debugging.check_numerics(output, "Bad!")
return output
return simple_func
First, execute the function with the debug stripper optimizer turned off.
test_func = test_function_2()
p1 = tf.constant(float('inf'))
try:
test_func(p1)
except tf.errors.InvalidArgumentError as e:
traceback.print_exc(limit=2)
2024-08-15 03:13:19.616105: E tensorflow/core/kernels/check_numerics_op.cc:299] abnormal_detected_host @0x7fe7d6c00100 = {0, 1} Bad! Traceback (most recent call last): File "/tmpfs/tmp/ipykernel_201523/3616845043.py", line 4, in <module> test_func(p1) File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler raise e.with_traceback(filtered_tb) from None tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error: Detected at node CheckNumerics defined at (most recent call last): File "/usr/lib/python3.9/runpy.py", line 197, in _run_module_as_main File "/usr/lib/python3.9/runpy.py", line 87, in _run_code File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel_launcher.py", line 18, in <module> File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/traitlets/config/application.py", line 1075, in launch_instance File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/kernelapp.py", line 739, in start File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tornado/platform/asyncio.py", line 205, in start File "/usr/lib/python3.9/asyncio/base_events.py", line 601, in run_forever File "/usr/lib/python3.9/asyncio/base_events.py", line 1905, in _run_once File "/usr/lib/python3.9/asyncio/events.py", line 80, in _run File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 545, in dispatch_queue File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 534, in process_one File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 437, in dispatch_shell File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/ipkernel.py", line 362, in execute_request File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/kernelbase.py", line 778, in execute_request File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/ipkernel.py", line 449, in do_execute File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/ipykernel/zmqshell.py", line 549, in run_cell File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3048, in run_cell File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3103, in _run_cell File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/IPython/core/async_helpers.py", line 129, in _pseudo_sync_runner File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3308, in run_cell_async File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3490, in run_ast_nodes File "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/IPython/core/interactiveshell.py", line 3550, in run_code File "/tmpfs/tmp/ipykernel_201523/3616845043.py", line 4, in <module> File "/tmpfs/tmp/ipykernel_201523/2241890286.py", line 5, in simple_func Bad! : Tensor had Inf values [[{ {node CheckNumerics} }]] [Op:__inference_simple_func_128]
tf.debugging.check_numerics
raises an invalid argument error because of the Inf
argument to test_func
.
Enable the debug stripper optimizer and execute the function again.
with options({'debug_stripper': True}):
test_func2 = test_function_2()
p1 = tf.constant(float('inf'))
try:
test_func2(p1)
except tf.errors.InvalidArgumentError as e:
traceback.print_exc(limit=2)
The debug stripper optimizer strips the tf.debug.check_numerics
node from the graph and executes the function without raising any errors.
Summary
The TensorFlow runtime uses Grappler to optimize graphs automatically before execution. Use tf.config.optimizer.set_experimental_options
to enable or disable the various graph optimizers.
For more information on Grappler, see TensorFlow Graph Optimizations.