Introducción al corte de tensor

Organiza tus páginas con colecciones Guarda y categoriza el contenido según tus preferencias.

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar libreta

Cuando se trabaja en aplicaciones de ML, como detección de objetos y NLP, a veces es necesario trabajar con subsecciones (rebanadas) de tensores. Por ejemplo, si la arquitectura de su modelo incluye enrutamiento, donde una capa puede controlar qué ejemplo de entrenamiento se enruta a la siguiente capa. En este caso, podría usar operaciones de división de tensores para dividir los tensores y volver a juntarlos en el orden correcto.

En las aplicaciones de NLP, puede usar el corte de tensor para realizar el enmascaramiento de palabras durante el entrenamiento. Por ejemplo, puede generar datos de entrenamiento a partir de una lista de oraciones eligiendo un índice de palabras para enmascarar en cada oración, quitando la palabra como etiqueta y luego reemplazando la palabra elegida con un token de máscara.

En esta guía, aprenderá a usar las API de TensorFlow para:

  • Extraer rebanadas de un tensor
  • Insertar datos en índices específicos en un tensor

Esta guía asume familiaridad con la indexación de tensores. Lea las secciones de indexación de las guías de Tensor y TensorFlow NumPy antes de comenzar con esta guía.

Configuración

import tensorflow as tf
import numpy as np

Extraer rebanadas de tensor

Realice un corte de tensor similar a NumPy usando tf.slice .

t1 = tf.constant([0, 1, 2, 3, 4, 5, 6, 7])

print(tf.slice(t1,
               begin=[1],
               size=[3]))
tf.Tensor([1 2 3], shape=(3,), dtype=int32)

Alternativamente, puede usar una sintaxis más pitónica. Tenga en cuenta que los cortes de tensor están espaciados uniformemente en un rango de inicio y fin.

print(t1[1:4])
tf.Tensor([1 2 3], shape=(3,), dtype=int32)

print(t1[-3:])
tf.Tensor([5 6 7], shape=(3,), dtype=int32)

Para tensores bidimensionales, puede usar algo como:

t2 = tf.constant([[0, 1, 2, 3, 4],
                  [5, 6, 7, 8, 9],
                  [10, 11, 12, 13, 14],
                  [15, 16, 17, 18, 19]])

print(t2[:-1, 1:3])
tf.Tensor(
[[ 1  2]
 [ 6  7]
 [11 12]], shape=(3, 2), dtype=int32)

También puede usar tf.slice en tensores de dimensiones superiores.

t3 = tf.constant([[[1, 3, 5, 7],
                   [9, 11, 13, 15]],
                  [[17, 19, 21, 23],
                   [25, 27, 29, 31]]
                  ])

print(tf.slice(t3,
               begin=[1, 1, 0],
               size=[1, 1, 2]))
tf.Tensor([[[25 27]]], shape=(1, 1, 2), dtype=int32)

También puede usar tf.strided_slice para extraer rebanadas de tensores 'caminando' sobre las dimensiones del tensor.

Use tf.gather para extraer índices específicos de un solo eje de un tensor.

print(tf.gather(t1,
                indices=[0, 3, 6]))

# This is similar to doing

t1[::3]
tf.Tensor([0 3 6], shape=(3,), dtype=int32)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([0, 3, 6], dtype=int32)>

tf.gather no requiere que los índices estén espaciados uniformemente.

alphabet = tf.constant(list('abcdefghijklmnopqrstuvwxyz'))

print(tf.gather(alphabet,
                indices=[2, 0, 19, 18]))
tf.Tensor([b'c' b'a' b't' b's'], shape=(4,), dtype=string)

Para extraer sectores de múltiples ejes de un tensor, use tf.gather_nd . Esto es útil cuando desea recopilar los elementos de una matriz en lugar de solo sus filas o columnas.

t4 = tf.constant([[0, 5],
                  [1, 6],
                  [2, 7],
                  [3, 8],
                  [4, 9]])

print(tf.gather_nd(t4,
                   indices=[[2], [3], [0]]))
tf.Tensor(
[[2 7]
 [3 8]
 [0 5]], shape=(3, 2), dtype=int32)

t5 = np.reshape(np.arange(18), [2, 3, 3])

print(tf.gather_nd(t5,
                   indices=[[0, 0, 0], [1, 2, 1]]))
tf.Tensor([ 0 16], shape=(2,), dtype=int64)
# Return a list of two matrices

print(tf.gather_nd(t5,
                   indices=[[[0, 0], [0, 2]], [[1, 0], [1, 2]]]))
tf.Tensor(
[[[ 0  1  2]
  [ 6  7  8]]

 [[ 9 10 11]
  [15 16 17]]], shape=(2, 2, 3), dtype=int64)
# Return one matrix

print(tf.gather_nd(t5,
                   indices=[[0, 0], [0, 2], [1, 0], [1, 2]]))
tf.Tensor(
[[ 0  1  2]
 [ 6  7  8]
 [ 9 10 11]
 [15 16 17]], shape=(4, 3), dtype=int64)

Insertar datos en tensores

Utilice tf.scatter_nd para insertar datos en sectores/índices específicos de un tensor. Tenga en cuenta que el tensor en el que inserta valores se inicializa en cero.

t6 = tf.constant([10])
indices = tf.constant([[1], [3], [5], [7], [9]])
data = tf.constant([2, 4, 6, 8, 10])

print(tf.scatter_nd(indices=indices,
                    updates=data,
                    shape=t6))
tf.Tensor([ 0  2  0  4  0  6  0  8  0 10], shape=(10,), dtype=int32)

Los métodos como tf.scatter_nd que requieren tensores inicializados en cero son similares a los inicializadores de tensores dispersos. Puede usar tf.gather_nd y tf.scatter_nd para imitar el comportamiento de las operaciones de tensor dispersas.

Considere un ejemplo en el que construye un tensor disperso usando estos dos métodos en conjunto.

# Gather values from one tensor by specifying indices

new_indices = tf.constant([[0, 2], [2, 1], [3, 3]])
t7 = tf.gather_nd(t2, indices=new_indices)

# Add these values into a new tensor

t8 = tf.scatter_nd(indices=new_indices, updates=t7, shape=tf.constant([4, 5]))

print(t8)
tf.Tensor(
[[ 0  0  2  0  0]
 [ 0  0  0  0  0]
 [ 0 11  0  0  0]
 [ 0  0  0 18  0]], shape=(4, 5), dtype=int32)

Esto es similar a:

t9 = tf.SparseTensor(indices=[[0, 2], [2, 1], [3, 3]],
                     values=[2, 11, 18],
                     dense_shape=[4, 5])

print(t9)
SparseTensor(indices=tf.Tensor(
[[0 2]
 [2 1]
 [3 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([ 2 11 18], shape=(3,), dtype=int32), dense_shape=tf.Tensor([4 5], shape=(2,), dtype=int64))
# Convert the sparse tensor into a dense tensor

t10 = tf.sparse.to_dense(t9)

print(t10)
tf.Tensor(
[[ 0  0  2  0  0]
 [ 0  0  0  0  0]
 [ 0 11  0  0  0]
 [ 0  0  0 18  0]], shape=(4, 5), dtype=int32)

Para insertar datos en un tensor con valores preexistentes, use tf.tensor_scatter_nd_add .

t11 = tf.constant([[2, 7, 0],
                   [9, 0, 1],
                   [0, 3, 8]])

# Convert the tensor into a magic square by inserting numbers at appropriate indices

t12 = tf.tensor_scatter_nd_add(t11,
                               indices=[[0, 2], [1, 1], [2, 0]],
                               updates=[6, 5, 4])

print(t12)
tf.Tensor(
[[2 7 6]
 [9 5 1]
 [4 3 8]], shape=(3, 3), dtype=int32)

De manera similar, use tf.tensor_scatter_nd_sub para restar valores de un tensor con valores preexistentes.

# Convert the tensor into an identity matrix

t13 = tf.tensor_scatter_nd_sub(t11,
                               indices=[[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [2, 1], [2, 2]],
                               updates=[1, 7, 9, -1, 1, 3, 7])

print(t13)
tf.Tensor(
[[1 0 0]
 [0 1 0]
 [0 0 1]], shape=(3, 3), dtype=int32)

Use tf.tensor_scatter_nd_min para copiar valores mínimos de elementos de un tensor a otro.

t14 = tf.constant([[-2, -7, 0],
                   [-9, 0, 1],
                   [0, -3, -8]])

t15 = tf.tensor_scatter_nd_min(t14,
                               indices=[[0, 2], [1, 1], [2, 0]],
                               updates=[-6, -5, -4])

print(t15)
tf.Tensor(
[[-2 -7 -6]
 [-9 -5  1]
 [-4 -3 -8]], shape=(3, 3), dtype=int32)

Del mismo modo, use tf.tensor_scatter_nd_max para copiar los valores máximos de los elementos de un tensor a otro.

t16 = tf.tensor_scatter_nd_max(t14,
                               indices=[[0, 2], [1, 1], [2, 0]],
                               updates=[6, 5, 4])

print(t16)
tf.Tensor(
[[-2 -7  6]
 [-9  5  1]
 [ 4 -3 -8]], shape=(3, 3), dtype=int32)

Más lecturas y recursos

En esta guía, aprendiste a usar las operaciones de corte de tensor disponibles con TensorFlow para ejercer un control más preciso sobre los elementos de tus tensores.