Missed TensorFlow World? Check out the recap. Learn more

hub.KerasLayer

Class KerasLayer

Wraps a Hub module (or a similar callable) for TF2 as a Keras Layer.

This layer wraps a callable object for use as a Keras layer. The callable object can be passed directly, or be specified by a Python string with a handle that gets passed to hub.load().

The callable object is expected to follow the conventions detailed below. (These are met by TF2-compatible modules loaded from TensorFlow Hub.)

The callable is invoked with a single positional argument set to one tensor or a list of tensors containing the inputs to the layer. If the callable accepts a training argument, a Python boolean is passed for it. It is True if this layer is marked trainable and called for training.

If present, the following attributes of callable are understood to have special meanings: variables: a list of all tf.Variable objects that the callable depends on. trainable_variables: those elements of variables that are reported as trainable variables of this Keras Layer when the layer is trainable. regularization_losses: a list of callables to be added as losses of this Keras Layer when the layer is trainable. Each one must accept zero arguments and return a scalar tensor.

hub.KerasLayer(
    "/tmp/text_embedding_model",
    output_shape=[20],  # Outputs a tensor with shape [batch_size, 20].
    input_shape=[],     # Expects a tensor of shape [batch_size] as input.
    dtype=tf.string)    # Expects a tf.string input tensor.

Args:

  • handle: a callable object (subject to the conventions above), or a Python string for which hub.load() returns such a callable. A string is required to save the Keras config of this Layer.
  • trainable: Boolean controlling whether this layer is trainable.
  • arguments: optionally, a dict with additional keyword arguments passed to the callable. These must be JSON-serializable to save the Keras config of this layer.
  • **kwargs: 'output_shape': A tuple with the (possibly partial) output shape of the callable without leading batch size. Other arguments are pass into the Layer constructor.

__init__

__init__(
    handle,
    trainable=False,
    arguments=None,
    **kwargs
)

Properties

activity_regularizer

Optional regularizer function for the output of this layer.

dtype

dynamic

input

Retrieves the input tensor(s) of a layer.

Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.

Returns:

Input tensor or list of input tensors.

Raises:

  • RuntimeError: If called in Eager mode.
  • AttributeError: If no inbound nodes are found.

input_mask

Retrieves the input mask tensor(s) of a layer.

Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

Returns:

Input mask tensor (potentially None) or list of input mask tensors.

Raises:

  • AttributeError: if the layer is connected to more than one incoming layers.

input_shape

Retrieves the input shape(s) of a layer.

Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape.

Returns:

Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor).

Raises:

  • AttributeError: if the layer has no defined input_shape.
  • RuntimeError: if called in Eager mode.

input_spec

losses

Losses which are associated with this Layer.

Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing losses under a tf.GradientTape will propagate gradients back to the corresponding variables.

Returns:

A list of tensors.

metrics

name

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

non_trainable_weights

output

Retrieves the output tensor(s) of a layer.

Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.

Returns:

Output tensor or list of output tensors.

Raises:

  • AttributeError: if the layer is connected to more than one incoming layers.
  • RuntimeError: if called in Eager mode.

output_mask

Retrieves the output mask tensor(s) of a layer.

Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

Returns:

Output mask tensor (potentially None) or list of output mask tensors.

Raises:

  • AttributeError: if the layer is connected to more than one incoming layers.

output_shape

Retrieves the output shape(s) of a layer.

Only applicable if the layer has one output, or if all outputs have the same shape.

Returns:

Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor).

Raises:

  • AttributeError: if the layer has no defined output shape.
  • RuntimeError: if called in Eager mode.

submodules

Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
assert list(a.submodules) == [b, c]
assert list(b.submodules) == [c]
assert list(c.submodules) == []

Returns:

A sequence of all submodules.

trainable

trainable_variables

trainable_weights

updates

variables

Returns the list of all layer variables/weights.

Alias of self.weights.

Returns:

A list of variables.

weights

Returns the list of all layer variables/weights.

Returns:

A list of variables.

Methods

__call__

__call__(
    inputs,
    *args,
    **kwargs
)

Wraps call, applying pre- and post-processing steps.

Arguments:

  • inputs: input tensor(s).
  • *args: additional positional arguments to be passed to self.call.
  • **kwargs: additional keyword arguments to be passed to self.call.

Returns:

Output tensor(s).

Raises:

  • ValueError: if the layer's call method returns None (an invalid value).

__delattr__

__delattr__(name)

__setattr__

__setattr__(
    name,
    value
)

build

build(input_shape)

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Arguments:

  • input_shape: Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

compute_mask

compute_mask(
    inputs,
    mask=None
)

Computes an output mask tensor.

Arguments:

  • inputs: Tensor or list of tensors.
  • mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape

compute_output_shape(input_shape)

Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will later be used with inputs that match the input shape provided here.

Arguments:

  • input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns:

An input shape tuple.

count_params

count_params()

Count the total number of scalars composing the weights.

Returns:

An integer count.

Raises:

  • ValueError: if the layer isn't yet built (in which case its weights aren't yet defined).

from_config

from_config(
    cls,
    config
)

Creates a layer from its config.

This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).

Arguments:

  • config: A Python dictionary, typically the output of get_config.

Returns:

A layer instance.

get_config

get_config()

get_input_at

get_input_at(node_index)

Retrieves the input tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple inputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_input_mask_at

get_input_mask_at(node_index)

Retrieves the input mask tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple inputs).

get_input_shape_at

get_input_shape_at(node_index)

Retrieves the input shape(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple inputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_losses_for

get_losses_for(inputs)

Retrieves losses relevant to a specific set of inputs.

Arguments:

  • inputs: Input tensor or list/tuple of input tensors.

Returns:

List of loss tensors of the layer that depend on inputs.

get_output_at

get_output_at(node_index)

Retrieves the output tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple outputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_output_mask_at

get_output_mask_at(node_index)

Retrieves the output mask tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple outputs).

get_output_shape_at

get_output_shape_at(node_index)

Retrieves the output shape(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple outputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_updates_for

get_updates_for(inputs)

Retrieves updates relevant to a specific set of inputs.

Arguments:

  • inputs: Input tensor or list/tuple of input tensors.

Returns:

List of update ops of the layer that depend on inputs.

get_weights

get_weights()

Returns the current weights of the layer.

Returns:

Weights values as a list of numpy arrays.

set_weights

set_weights(weights)

Sets the weights of the layer, from Numpy arrays.

Arguments:

  • weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).

Raises:

  • ValueError: If the provided weights list does not match the layer's specifications.

with_name_scope

with_name_scope(
    cls,
    method
)

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 64]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([8, 32]))
# ==> <tf.Tensor: ...>
mod.w
# ==> <tf.Variable ...'my_module/w:0'>

Args:

  • method: The method to wrap.

Returns:

The original method wrapped such that it enters the module's name scope.