Operazioni
mhlo.abs (mhlo::AbsOp)
Funzionamento dell'ABS
Sintassi:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue un'operazione abs elemento per elemento sul tensore operand e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Esempio:
%result = mhlo.abs %operand : tensor<3xi32>
Tratti: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di numeri interi senza segno a 2/4/8/16/32/64 bit o di tipo float a 4/6/8/16/32/64 bit o di tipo complesso con elementi float a 32/64 bit o numeri interi con segno quantizzati uniformemente a 2/4/8/16/32 bit o numeri interi con segno quantizzati uniformemente per asse a 2/4/8/16/32 bit o numeri interi senza segno quantizzati uniformemente per asse a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformemente per asse a 2/4/8/16/32 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di numeri interi senza segno a 2/4/8/16/32/64 bit o numeri in virgola mobile a 4/6/8/16/32/64 bit o numeri interi con segno quantizzati uniformemente a 2/4/8/16/32 bit o numeri interi con segno quantizzati uniformemente per asse a 2/4/8/16/32 bit o numeri interi senza segno quantizzati uniformemente per asse a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformemente per asse a 2/4/8/16/32 bit |
mhlo.acos (mhlo::AcosOp)
Operazione Acos
Sintassi:
operation ::= `mhlo.acos` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue un'operazione acos elemento per elemento sul tensore operand e produce un tensore result .
Esempio:
%result = mhlo.acos %operand : tensor<2x2xf32>
Tratti: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: InferShapedTypeOpInterface , InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
mhlo.acosh (mhlo::AcoshOp)
Operazione Acosh
Sintassi:
operation ::= `mhlo.acosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue un'operazione acosh elemento per elemento sul tensore operand e produce un tensore result .
Esempio:
%result = mhlo.acosh %operand : tensor<2x2xf32>
Tratti: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: InferShapedTypeOpInterface , InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
mhlo.add (mhlo::AddOp)
Aggiungi operazione
Sintassi:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Esegue l'addizione elemento per elemento di due tensori lhs e rhs e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Esempio:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Tratti: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
lhs | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
rhs | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.add_dependency (mhlo::AddDependencyOp)
Operazione AddDependency
Sintassi:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Questa operazione è riservata al compilatore XLA, quindi non ha ancora una specifica.
Informalmente, questa operazione utilizza due operandi: un operando dati e un token. L'output dell'operazione è l'operando dati. Se utilizzata con AfterAll, questa operazione consente di ordinare le operazioni non collaterali (quelle che non producono valori token).
Esempio:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o tensore classificato di valori interi quantizzati per asse o token o token stablehlo |
token | token o token stablehlo |
Risultati:
| Risultato | Descrizione |
|---|---|
output | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o tensore classificato di valori interi quantizzati per asse o token o token stablehlo |
mhlo.after_all (mhlo::AfterAllOp)
Operazione AfterAll
Sintassi:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Assicura che le operazioni che producono gli inputs vengano eseguite prima di qualsiasi operazione che dipende dal result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Esempio:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
inputs | variadico del token |
Risultati:
| Risultato | Descrizione |
|---|---|
result | gettone |
mhlo.all_gather (mhlo::AllGatherOp)
Operazione AllGather
All'interno di ciascun gruppo di processi nella griglia dei processi, concatena i valori del tensore operando di ciascun processo lungo all_gather_dim e produce un tensore risultato. Il computation viene applicato separatamente per ciascun operando in operands , producendo un risultato per operando.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Esempio:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Caratteristiche: SameOperandsAndResultElementType
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
all_gather_dim | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è non negativo |
replica_groups | ::mlir::DenseIntElementsAttr | Attributo di elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
use_global_device_ids | ::mlir::UnitAttr | attributo unità |
Operandi:
| Operando | Descrizione |
|---|---|
operands | variadica del tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | variadica del tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.all_reduce (mhlo::AllReduceOp)
Operazione AllReduce
All'interno di ciascun gruppo di processi nella griglia dei processi, applica un computation della funzione di riduzione ai valori di un tensore operando di ciascun processo e produce un tensore risultato. Il computation viene applicato separatamente per ciascun operando in operands , producendo un risultato per operando.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Esempio:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Caratteristiche: InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfacce: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Attributo di elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
use_global_device_ids | ::mlir::UnitAttr | attributo unità |
Operandi:
| Operando | Descrizione |
|---|---|
operands | variadica del tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | variadica del tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.all_to_all (mhlo::AllToAllOp)
Operazione AllToAll
All'interno di ciascun gruppo di processi nella griglia dei processi, suddivide i valori del tensore operand lungo split_dimension in parti, distribuisce le parti suddivise tra i processi, concatena le parti sparse lungo concat_dimension e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Esempio:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Tratti: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
split_dimension | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è non negativo |
concat_dimension | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è non negativo |
split_count | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è positivo |
replica_groups | ::mlir::DenseIntElementsAttr | Attributo di elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
Operandi:
| Operando | Descrizione |
|---|---|
operand | variadica del tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | variadica del tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.and (mhlo::AndOp)
E operazione
Sintassi:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Esegue l'AND elemento per elemento di due tensori lhs e rhs e produce un tensore result
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Esempio:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Tratti: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
lhs | tensore classificato di valori booleani o interi a 2/4/8/16/32/64 bit |
rhs | tensore classificato di valori booleani o interi a 2/4/8/16/32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.asin (mhlo::AsinOp)
Operazione Asin
Sintassi:
operation ::= `mhlo.asin` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue un'operazione asin elemento per elemento sul tensore operand e produce un tensore result .
Esempio:
%result = mhlo.asin %operand : tensor<2x2xf32>
Tratti: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: InferShapedTypeOpInterface , InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
mhlo.asinh (mhlo::AsinhOp)
Operazione Asinh
Sintassi:
operation ::= `mhlo.asinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue un'operazione asinh elemento per elemento sul tensore operand e produce un tensore result .
Esempio:
%result = mhlo.asinh %operand : tensor<2x2xf32>
Tratti: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: InferShapedTypeOpInterface , InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
mhlo.async_done (mhlo::AsyncDoneOp)
Operazione AsyncDone
Questa operazione è riservata al compilatore XLA, quindi non ha ancora una specifica.
In termini informali, questa operazione si blocca fino alla fine di un calcolo asincrono, restituendo il risultato finale del calcolo asincrono.
Per ulteriori informazioni, consultare la documentazione di AsyncStart.
Interfacce: InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
bundle | async_bundle con qualsiasi combinazione di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse o valori token o token stablehlo |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | variadic di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o di tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse o token o token stablehlo o tupla annidata con qualsiasi combinazione di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o di tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o memref di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o di tipo complesso con elementi float a 32/64 bit o per tensore valori quantizzati interi o tensore classificato di valori quantizzati interi per asse o valori token |
mhlo.async_start (mhlo::AsyncStartOp)
Operazione AsyncStart
Questa operazione è riservata al compilatore XLA, quindi non ha ancora una specifica.
In termini informali, questa operazione avvia un calcolo asincrono.
Questa funzione viene utilizzata quando sono presenti funzioni che contengono sia attese asincrone (come i DMA) sia calcoli on-thread. Ad esempio, una funzione potrebbe essere composta da un calcolo, un DMA, un altro calcolo, un secondo DMA e un calcolo finale. Questo sarebbe rappresentato da un async_start seguito da un async_update e da un async_done. L'async_start eseguirebbe il primo calcolo on-thread e poi avvierebbe il DMA. L'async_update attenderebbe il completamento del DMA, se non è ancora stato completato, quindi eseguirebbe il secondo calcolo nella funzione e avvierebbe il secondo DMA. Infine, l'async_done attenderebbe quest'ultimo DMA, quindi eseguirebbe l'ultimo calcolo che deve essere eseguito on-thread e restituirebbe il risultato di quel calcolo finale.
operands vengono passati direttamente al calcolo. called_computation è la funzione che verrà eseguita in modo asincrono. execution_thread è il nome del thread in cui verrà eseguita. Il thread principale è chiamato "main". Tutti i thread hanno un nome.
Restituisce tutti gli stati necessari tra le operazioni asincrone. Dopo l'assegnazione del buffer, i valori restituiti rappresentano lo spazio necessario per contenere l'input, i risultati e gli eventuali blocchi note necessari o modificati dall'operazione asincrona.
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | attributo di riferimento del simbolo piatto |
execution_thread | ::mlir::StringAttr | attributo stringa |
Operandi:
| Operando | Descrizione |
|---|---|
inputs | variadic di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o di tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse o token o token stablehlo o tupla annidata con qualsiasi combinazione di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o di tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o memref di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o di tipo complesso con elementi float a 32/64 bit o per tensore valori quantizzati interi o tensore classificato di valori quantizzati interi per asse o valori token |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | async_bundle con qualsiasi combinazione di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse o valori token o token stablehlo |
mhlo.async_update (mhlo::AsyncUpdateOp)
Operazione AsyncUpdate
Questa operazione è riservata al compilatore XLA, quindi non ha ancora una specifica.
In modo informale, questa operazione blocca un calcolo asincrono fino a una barriera di sincronizzazione. Dopo aver eseguito l'operazione, il bundle viene restituito.
Per ulteriori informazioni, consultare la documentazione di AsyncStart.
Interfacce: InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
bundle | async_bundle con qualsiasi combinazione di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse o valori token o token stablehlo |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | async_bundle con qualsiasi combinazione di tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o tipo complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse o valori token o token stablehlo |
mhlo.atan2 (mhlo::Atan2Op)
Operazione Atan2
Sintassi:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Esegue l'operazione atan2 elemento per elemento sui tensori lhs e rhs e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Esempio:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Tratti: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
lhs | tensore classificato di tipo float o complesso a 4/6/8/16/32/64 bit con elementi float a 32/64 bit o valori interi quantizzati per tensore |
rhs | tensore classificato di tipo float o complesso a 4/6/8/16/32/64 bit con elementi float a 32/64 bit o valori interi quantizzati per tensore |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di tipo float o complesso a 4/6/8/16/32/64 bit con elementi float a 32/64 bit o valori interi quantizzati per tensore |
mhlo.atanh (mhlo::AtanhOp)
Operazione Atanh
Sintassi:
operation ::= `mhlo.atanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue un'operazione atanh elemento per elemento sul tensore operand e produce un tensore result .
Esempio:
%result = mhlo.atanh %operand : tensor<2x2xf32>
Tratti: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: InferShapedTypeOpInterface , InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
mhlo.batch_norm_grad (mhlo::BatchNormGradOp)
Operazione BatchNormGrad
Calcola i gradienti di diversi input di BatchNormTrainingOp tramite retropropagazione da grad_output e produce i tensori grad_operand , grad_scale e grad_offset .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Esempio:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Tratti: AlwaysSpeculatableImplTrait , InferTensorType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
epsilon | ::mlir::FloatAttr | Attributo float a 32 bit |
feature_index | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è non negativo |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di valori float a 4/6/8/16/32/64 bit |
scale | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
mean | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
variance | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
grad_output | tensore classificato di valori float a 4/6/8/16/32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
grad_operand | tensore classificato di valori float a 4/6/8/16/32/64 bit |
grad_scale | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
grad_offset | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)
Operazione BatchNormInference
Normalizza il tensore operand su tutte le dimensioni, ad eccezione della dimensione feature_index , e produce un tensore result .
Vedere: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Esempio:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Tratti: AlwaysSpeculatableImplTrait , InferTensorType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
epsilon | ::mlir::FloatAttr | Attributo float a 32 bit |
feature_index | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è non negativo |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di valori float a 4/6/8/16/32/64 bit |
scale | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
offset | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
mean | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
variance | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di valori float a 4/6/8/16/32/64 bit |
mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)
Operazione BatchNormTraining
Calcola la media e la varianza tra le dimensioni batch e spaziali e normalizza il tensore operand per ogni caratteristica nella dimensione feature_index e produce i tensori output batch_mean e batch_var .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Esempio:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Tratti: AlwaysSpeculatableImplTrait , InferTensorType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
epsilon | ::mlir::FloatAttr | Attributo float a 32 bit |
feature_index | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è non negativo |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di valori float a 4/6/8/16/32/64 bit |
scale | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
offset | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
output | tensore classificato di valori float a 4/6/8/16/32/64 bit |
batch_mean | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
batch_var | Tensore 1D di valori float a 4/6/8/16/32/64 bit |
mhlo.bitcast (mhlo::BitcastOp)
Operazione Bitcast
Sintassi:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Questa operazione è riservata al compilatore XLA, quindi non ha ancora una specifica.
In termini informali, questa operazione modifica la forma dell'input in modo che la disposizione fisica degli elementi resti invariata.
Questa operazione necessita di informazioni di layout per dare un senso alla "disposizione fisica degli elementi" e il supporto del layout in MHLO è attualmente in fase di sviluppo.
Esempio:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.bitcast_convert (mhlo::BitcastConvertOp)
Operazione BitcastConvert
Sintassi:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Esegue un'operazione bitcast sul tensore operand e produce un tensore result in cui i bit dell'intero tensore operand vengono reinterpretati utilizzando il tipo del tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Esempio:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.broadcast (mhlo::BroadcastOp)
Operazione di trasmissione
Questa operazione sta per uscire da StableHLO, quindi non è inclusa nella specifica: https://github.com/openxla/stablehlo/issues/3
Informalmente, questa operazione fa la stessa cosa di Broadcast di XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast
Esempio:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Tratti: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
broadcast_sizes | ::mlir::DenseIntElementsAttr | Attributo di elementi interi senza segno a 64 bit |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.broadcast_in_dim (mhlo::BroadcastInDimOp)
Operazione BroadcastInDim
Espande le dimensioni e/o il rango di un tensore di input duplicando i dati nel tensore operand e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Esempio:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Caratteristiche: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfacce: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | Attributo di elementi interi senza segno a 64 bit |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore di dimensione statica o limitata singola di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.case (mhlo::CaseOp)
operazione di caso
Produce l'output dall'esecuzione di una sola function dai branches in base al valore index .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Esempio:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Caratteristiche: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfacce: InferTypeOpInterface
Operandi:
| Operando | Descrizione |
|---|---|
index | tensore di valori interi senza segno a 32 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | variadico del tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o tensore classificato di valori interi quantizzati per asse o token |
mhlo.cbrt (mhlo::CbrtOp)
operazione Cbrt
Sintassi:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue l'operazione di radice cubica elemento per elemento sul tensore operand e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Esempio:
%result = mhlo.cbrt %operand : tensor<4xf32>
Tratti: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | La precisione richiesta per le operazioni unarie. |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o complesso a 4/6/8/16/32/64 bit con elementi float a 32/64 bit o valori interi quantizzati per tensore |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di tipo float o complesso a 4/6/8/16/32/64 bit con elementi float a 32/64 bit o valori interi quantizzati per tensore |
mhlo.ceil (mhlo::CeilOp)
Operazione a soffitto
Sintassi:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue il ceil elemento per elemento del tensore operand e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Esempio:
%result = mhlo.ceil %operand : tensor<5xf32>
Tratti: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di valori float o interi quantizzati per tensore a 4/6/8/16/32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di valori float o interi quantizzati per tensore a 4/6/8/16/32/64 bit |
mhlo.cholesky (mhlo::CholeskyOp)
Operazione Cholesky
Calcola la decomposizione di Cholesky di un lotto di matrici.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Esempio:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Tratti: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
lower | ::mlir::BoolAttr | attributo bool |
Operandi:
| Operando | Descrizione |
|---|---|
a | tensore classificato di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore classificato di tipo float o complesso a 4/6/8/16/32/64 bit con valori di elementi float a 32/64 bit |
mhlo.clamp (mhlo::ClampOp)
operazione di serraggio
Sintassi:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Blocca ogni elemento del tensore operand tra un valore minimo e uno massimo e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Esempio:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Tratti: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
| Operando | Descrizione |
|---|---|
min | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
max | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.collective_broadcast (mhlo::CollectiveBroadcastOp)
Operazione di trasmissione collettiva
All'interno di ciascun gruppo di processi nella griglia dei processi, invia il valore del tensore operand dal processo sorgente ai processi di destinazione e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Esempio:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Caratteristiche: CompatibleOperandsAndResultType
Interfacce: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Attributo di elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.collective_permute (mhlo::CollectivePermuteOp)
Operazione CollectivePermute
All'interno di ciascun gruppo di processi nella griglia dei processi, invia il valore del tensore operand dal processo sorgente al processo di destinazione e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Esempio:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Tratti: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
source_target_pairs | ::mlir::DenseIntElementsAttr | Attributo di elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
Operandi:
| Operando | Descrizione |
|---|---|
operand | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
mhlo.compare (mhlo::CompareOp)
Confronta operazione
Sintassi:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Esegue un confronto elemento per elemento dei tensori lhs e rhs in base a comparison_direction e compare_type e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Esempio:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Tratti: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType
Interfacce: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
| Attributo | Tipo MLIR | Descrizione |
|---|---|---|
comparison_direction | ::mlir::mhlo::ComparisonDirectionAttr | Quale operazione di confronto eseguire. |
compare_type | ::mlir::mhlo::ComparisonTypeAttr | Quale tipo di confronto utilizzare. |
Operandi:
| Operando | Descrizione |
|---|---|
lhs | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
rhs | tensore classificato di tipo float o bool a 4/6/8/16/32/64 bit o intero a 2/4/8/16/32/64 bit o complesso con elementi float a 32/64 bit o valori interi quantizzati per tensore o valori interi quantizzati per asse |
Risultati:
| Risultato | Descrizione |
|---|---|
| «senza nome» | tensore classificato di valori booleani |
mhlo.complex (mhlo::ComplexOp)
Operazione complessa
Sintassi:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Esegue la conversione elemento per elemento in un valore complesso da una coppia di valori reali e immaginari, lhs e rhs , e produce un tensore result .
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Esempio:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape , SameOperandsElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 32/64-bit float values |
rhs | ranked tensor of 32/64-bit float values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of complex type with 32/64-bit float elements values |
mhlo.composite (mhlo::CompositeOp)
Composite operation
Sintassi:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Encapsulates an operation made up (composed) of other StableHLO operations, taking inputs and composite_attributes and producing results . The semantics of the op are implemented by the decomposition attribute. The composite op can be replaced with its decomposition without changing program semantics. In cases where inlining the decomposition does not provide the same op semantics, prefer using custom_call .
The version field (defaults to 0 ) is used to denote when a composite's semantics change.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Esempio:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Interfaces: SymbolUserOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
name | ::mlir::StringAttr | string attribute |
composite_attributes | ::mlir::DictionaryAttr | dictionary of named attribute values |
decomposition | ::mlir::FlatSymbolRefAttr | flat symbol reference attribute |
version | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.concatenate (mhlo::ConcatenateOp)
Concatenate operation
Concatenates a variadic number of tensors in inputs along dimension dimension in the same order as the given arguments and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Esempio:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Descrizione |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.constant (mhlo::ConstantOp)
Constant operation
Produces an output tensor from a constant value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Esempio:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , ConstantLike
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Risultati:
| Risultato | Descrizione |
|---|---|
output | statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convert (mhlo::ConvertOp)
Convert operation
Sintassi:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Esempio:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convolution (mhlo::ConvolutionOp)
Convolution operation
Sintassi:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs and slices of rhs and produces result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Esempio:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.copy (mhlo::CopyOp)
Copy operation
Sintassi:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Esempio:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.cosh (mhlo::CoshOp)
Cosh operation
Sintassi:
operation ::= `mhlo.cosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosh operation on operand tensor and produces a result tensor.
Esempio:
%result = mhlo.cosh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Operand | Descrizione |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.cosine (mhlo::CosineOp)
Cosine operation
Sintassi:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Esempio:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.count_leading_zeros (mhlo::ClzOp)
Clz operation
Sintassi:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Esempio:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.create_token (mhlo::CreateTokenOp)
CreateToken operation
Sintassi:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Esempio:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Risultati:
| Risultato | Descrizione |
|---|---|
output | gettone |
mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Esempio:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.custom_call (mhlo::CustomCallOp)
CustomCall operation
Sintassi:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Esempio:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
mhlo.divide (mhlo::DivOp)
Div operation
Sintassi:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Esempio:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.domain (mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.dot (mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Esempio:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dot_general (mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs and slices of rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Esempio:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Esempio:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_conv (mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Esempio:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
d_padding | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_gather (mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Esempio:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_iota (mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Esempio:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Descrizione |
|---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_pad (mhlo::DynamicPadOp)
DynamicPad operation
Sintassi:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)
DynamicReshape operation
Sintassi:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Esempio:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_slice (mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Esempio:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Sintassi:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Esempio:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
update | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.einsum (mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Esempio:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.erf (mhlo::ErfOp)
Erf operation
Sintassi:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand tensor and produces a result tensor.
Esempio:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.exponential (mhlo::ExpOp)
Exp operation
Sintassi:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Esempio:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.exponential_minus_one (mhlo::Expm1Op)
Expm1 operation
Sintassi:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Esempio:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.fft (mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Esempio:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.floor (mhlo::FloorOp)
Floor operation
Sintassi:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Esempio:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
mhlo.fusion (mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Risultati:
| Risultato | Descrizione |
|---|---|
results | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.gather (mhlo::GatherOp)
Gather operation
Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Esempio:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension of the operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Esempio:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element (mhlo::GetTupleElementOp)
GetTupleElement operation
Sintassi:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index position of the operand tuple and produces a result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Esempio:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Descrizione |
|---|---|
operand | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.if (mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface
Operands:
| Operand | Descrizione |
|---|---|
pred | ranked tensor of bool values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.imag (mhlo::ImagOp)
Imag operation
Sintassi:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Esempio:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.infeed (mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Esempio:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
| Operand | Descrizione |
|---|---|
token | gettone |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.iota (mhlo::IotaOp)
Iota operation
Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Esempio:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Risultati:
| Risultato | Descrizione |
|---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.is_finite (mhlo::IsFiniteOp)
IsFinite operation
Sintassi:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Esempio:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
x | ranked tensor of 4/6/8/16/32/64-bit float values |
Risultati:
| Risultato | Descrizione |
|---|---|
y | ranked tensor of bool values |
mhlo.log (mhlo::LogOp)
Log operation
Sintassi:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Esempio:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.log_plus_one (mhlo::Log1pOp)
Log1p operation
Sintassi:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Esempio:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.logistic (mhlo::LogisticOp)
Logistic operation
Sintassi:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Esempio:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.map (mhlo::MapOp)
Map operation
Applies a map function computation to inputs along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Esempio:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.maximum (mhlo::MaxOp)
Max operation
Sintassi:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Esempio:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum (mhlo::MinOp)
Min operation
Sintassi:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Esempio:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Sintassi:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
shapes | variadic of 1D tensor of index values |
Risultati:
| Risultato | Descrizione |
|---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply (mhlo::MulOp)
Mul operation
Sintassi:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Esempio:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.negate (mhlo::NegOp)
Neg operation
Sintassi:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Esempio:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.not (mhlo::NotOp)
Not operation
Sintassi:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand of type integer and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Esempio:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Sintassi:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Esempio:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Risultati:
| Risultato | Descrizione |
|---|---|
result | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.or (mhlo::OrOp)
Or operation
Sintassi:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Esempio:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.outfeed (mhlo::OutfeedOp)
Outfeed operation
Writes inputs to the outfeed and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Esempio:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | gettone |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | gettone |
mhlo.pad (mhlo::PadOp)
Pad operation
Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Esempio:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.partition_id (mhlo::PartitionIdOp)
PartitionId operation
Sintassi:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Esempio:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt (mhlo::PopulationCountOp)
PopulationCount operation
Sintassi:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Esempio:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.power (mhlo::PowOp)
Pow operation
Sintassi:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Esempio:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.ragged_dot (mhlo::RaggedDotOp)
Ragged matrix multiplication over a single ragged dimension
This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.
In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n] . Here the ragged dimension is an lhs non-contracting dimension ( m ). The dimensions b and k represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g ).
In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n] . Here the ragged dimension is an lhs/rhs contracting dimension ( k ).
In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n] . Here the ragged dimension is an lhs/rhs batch dimension ( b ).
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
ragged_dot_dimension_numbers | ::mlir::mhlo::RaggedDotDimensionNumbersAttr | Attribute that models the dimension information for ragged dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
group_sizes | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.real (mhlo::RealOp)
Real operation
Sintassi:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Esempio:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Sintassi:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Esempio:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.recv (mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Esempio:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
token | gettone |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.reduce (mhlo::ReduceOp)
Reduce operation
Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Esempio:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_precision (mhlo::ReducePrecisionOp)
ReducePrecision operation
Sintassi:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Esempio:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Risultati:
| Risultato | Descrizione |
|---|---|
output | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.reduce_scatter (mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Esempio:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_window (mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body to windows of inputs and init_values and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Esempio:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.remainder (mhlo::RemOp)
Rem operation
Sintassi:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Esempio:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.replica_id (mhlo::ReplicaIdOp)
ReplicaId operation
Sintassi:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Esempio:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape (mhlo::ReshapeOp)
Reshape operation
Sintassi:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand tensor to a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Esempio:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.return (mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return $results attr-dict ( : type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.rng (mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Esempio:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
| Operand | Descrizione |
|---|---|
a | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
b | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Esempio:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
| Operand | Descrizione |
|---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
Risultati:
| Risultato | Descrizione |
|---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_afz (mhlo::RoundOp)
Round operation
Sintassi:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Esempio:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Sintassi:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Esempio:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.rsqrt (mhlo::RsqrtOp)
Rsqrt operation
Sintassi:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Esempio:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.scatter (mhlo::ScatterOp)
Scatter operation
Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Esempio:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects , SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select (mhlo::SelectOp)
Select operation
Sintassi:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Esempio:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
pred | ranked tensor of bool values |
on_true | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
on_false | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select_and_scatter (mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Esempio:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
source | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.send (mhlo::SendOp)
Send operation
Sends inputs to a channel channel_id and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Esempio:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | gettone |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | gettone |
mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Esempio:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
size | tensor of 32-bit signless integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.shift_left (mhlo::ShiftLeftOp)
ShiftLeft operation
Sintassi:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Esempio:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Sintassi:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Esempio:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Sintassi:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Esempio:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.sign (mhlo::SignOp)
Sign operation
Sintassi:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand element-wise and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Esempio:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sine (mhlo::SineOp)
Sine operation
Sintassi:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Esempio:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sinh (mhlo::SinhOp)
Sinh operation
Sintassi:
operation ::= `mhlo.sinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sinh operation on operand tensor and produces a result tensor.
Esempio:
%result = mhlo.sinh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Operand | Descrizione |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.slice (mhlo::SliceOp)
Slice operation
Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Esempio:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sort (mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Esempio:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Descrizione |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sqrt (mhlo::SqrtOp)
Sqrt operation
Sintassi:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Esempio:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.stochastic_convert (mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait , Elementwise
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.subtract (mhlo::SubtractOp)
Subtract operation
Sintassi:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Esempio:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.tan (mhlo::TanOp)
Tan operation
Sintassi:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand) element-wise.
Esempio:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.tanh (mhlo::TanhOp)
Tanh operation
Sintassi:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Esempio:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.topk (mhlo::TopKOp)
TopK operation
Sintassi:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Esempio:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType , RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
values | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
indices | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.torch_index_select (mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Esempio:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
index | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.trace (mhlo::TraceOp)
Trace operation
Sintassi:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Esempio:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.transpose (mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand tensor using permutation and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Esempio:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.triangular_solve (mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Esempio:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
| Operand | Descrizione |
|---|---|
a | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
b | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.tuple (mhlo::TupleOp)
Tuple operation
Sintassi:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result tuple from values val .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Esempio:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)
UniformDequantize operation
Sintassi:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Esempio:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.uniform_quantize (mhlo::UniformQuantizeOp)
UniformQuantize operation
Sintassi:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Esempio:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
mhlo.while (mhlo::WhileOp)
While operation
Produces the output from executing body function 0 or more times while the cond function outputs true .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Esempio:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface , OpAsmOpInterface
Operands:
| Operand | Descrizione |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Sintassi:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Attributi:
| Attributo | MLIR Type | Descrizione |
|---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Risultati:
| Risultato | Descrizione |
|---|---|
| «unnamed» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor (mhlo::XorOp)
Xor operation
Sintassi:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Esempio:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Descrizione |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Risultati:
| Risultato | Descrizione |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Attributi
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| argTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
| resultIndex | int64_t | |
| resultTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
| isMustAlias | bool |
ChannelHandleAttr
Two 64-bit integers 'handle' and 'type'
Sintassi:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| maniglia | int64_t | |
| tipo | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Sintassi:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Sintassi:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| inputBatchDimension | int64_t | |
| inputFeatureDimension | int64_t | |
| inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
| kernelInputFeatureDimension | int64_t | |
| kernelOutputFeatureDimension | int64_t | |
| kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
| outputBatchDimension | int64_t | |
| outputFeatureDimension | int64_t | |
| outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Sintassi:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .
An empty value for indices means the whole shape is prefetched.
Per esempio,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| parametro | int64_t | |
| indici | ::llvm::ArrayRef<int64_t> | Dimensione |
| offset | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Sintassi:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
_Dequantization mode. Only MIN COMBINED is supported.
Sintassi:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Sintassi:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Sintassi:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| lhsPrecisionType | Type | |
| rhsPrecisionType | Type | |
| accumulationType | Type | |
| lhsComponentCount | int64_t | |
| rhsComponentCount | int64_t | |
| numPrimitiveOperations | int64_t | |
| allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
| rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
| lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
| rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
FftTypeAttr
XLA fast fourier transform type.
Sintassi:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
Fusion kind
Sintassi:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| offsetDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| operandBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| startIndexMap | ::llvm::ArrayRef<int64_t> | Dimensione |
| indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Sintassi:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| outputTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
| operandIndex | int64_t | |
| operandTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Sintassi:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::Precision | an enum of type Precision |
RaggedDotDimensionNumbersAttr
Attribute that models the dimension information for ragged dot.
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| dotDimensionNumbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
| lhsRaggedDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
| rhsGroupDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
ResultAccuracyAttr
The requested accuracy for unary ops.
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| atol | APFloat | |
| rtol | APFloat | |
| ulps | int64_t | |
| modalità | ::mlir::mhlo::ResultAccuracyModeAttr | XLA result accuracy mode. |
ResultAccuracyModeAttr
XLA result accuracy mode.
Sintassi:
#mhlo.result_accuracy_mode<
::mlir::mhlo::ResultAccuracyMode # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::ResultAccuracyMode | an enum of type ResultAccuracyMode |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Sintassi:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Sintassi:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| updateWindowDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| insertedWindowDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| inputBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Dimensione |
| indexVectorDim | int64_t |
TransposeAttr
Transpose options
Sintassi:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| valore | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Sintassi:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.
See HLO_BoundedAttrInterface for documentation for bounds .
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| limiti | ::llvm::ArrayRef<int64_t> |
Tipi
AsyncBundleType
Opaque collection of other types
Sintassi:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parametri:
| Parametro | C++ type | Descrizione |
|---|---|---|
| tipi | ::llvm::ArrayRef<Type> |
Enums
ComparisonDirection
Which comparison operation to perform.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| EQ | 0 | EQ |
| NE | 1 | NE |
| GE | 2 | GE |
| GT | 3 | GT |
| LE | 4 | LE |
| TENENTE | 5 | TENENTE |
ComparisonType
Which comparison type to use.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| NOTYPE | 0 | NOTYPE |
| GALLEGGIANTE | 1 | GALLEGGIANTE |
| TOTALORDER | 2 | TOTALORDER |
| FIRMATO | 3 | FIRMATO |
| UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
| API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
| API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
| API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
| API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| NESSUNO | 0 | NESSUNO |
| ULTIMO | 1 | ULTIMO |
| EARLIEST | 2 | EARLIEST |
DequantizeMode
_Dequantization mode. Only MIN COMBINED is supported.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| frammentazione | 0 | frammentazione |
FftType
XLA fast fourier transform type.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| FFT | 0 | FFT |
| IFFT | 1 | IFFT |
| RFFT | 2 | RFFT |
| IRFFT | 3 | IRFFT |
FusionKind
Fusion kind
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| kLoop | 0 | kLoop |
| kInput | 1 | kInput |
| kOutput | 2 | kOutput |
| kCustom | 3 | kCustom |
Precisione
XLA precision for an operand. Has backend specific meaning.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| PREDEFINITO | 0 | PREDEFINITO |
| ALTO | 1 | ALTO |
| PIÙ ALTO | 2 | PIÙ ALTO |
ResultAccuracyMode
XLA result accuracy mode.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| PREDEFINITO | 0 | PREDEFINITO |
| PIÙ ALTO | 1 | PIÙ ALTO |
| TOLLERANZA | 2 | TOLLERANZA |
RngAlgorithm
XLA PRNG algorithm to be used.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| PREDEFINITO | 0 | PREDEFINITO |
| THREE_FRY | 1 | THREE_FRY |
| PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| UNIFORME | 1 | UNIFORME |
| NORMALE | 2 | NORMALE |
Trasporre
Transpose options
Cases:
| Simbolo | Valore | Corda |
|---|---|---|
| TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
| NO_TRANSPOSE | 1 | NO_TRANSPOSE |
| TRASPORRE | 2 | TRASPORRE |
| ADJOINT | 3 | ADJOINT |