Operasyonlar
mhlo.abs (mhlo::AbsOp)
Karın kası ameliyatı
Sözdizimi:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand tensör üzerinde eleman bazında abs işlemi gerçekleştirir ve result tensörünü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Örnek:
%result = mhlo.abs %operand : tensor<3xi32>
Özellikler: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 2/4/8/16/32/64 bit işaretsiz tamsayı veya 4/6/8/16/32/64 bit float veya 32/64 bit float elemanları veya 2/4/8/16/32 bit tekdüze nicemlenmiş işaretli tamsayı veya 2/4/8/16/32 bit tekdüze nicemlenmiş eksen başına işaretli tamsayı veya 2/4/8/16/32 bit tekdüze nicemlenmiş işaretsiz tamsayı veya 2/4/8/16/32 bit tekdüze nicemlenmiş eksen başına işaretsiz tamsayı değerlerinin sıralı tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 2/4/8/16/32/64 bit işaretsiz tam sayı veya 4/6/8/16/32/64 bit kayan noktalı sayı veya 2/4/8/16/32 bit tekdüze nicemlenmiş işaretli tam sayı veya 2/4/8/16/32 bit tekdüze nicemlenmiş eksen başına işaretli tam sayı veya 2/4/8/16/32 bit tekdüze nicemlenmiş işaretsiz tam sayı veya 2/4/8/16/32 bit tekdüze nicemlenmiş eksen başına işaretsiz tam sayı değerlerinin sıralı tensörü |
mhlo.acos (mhlo::AcosOp)
Acos operasyonu
Sözdizimi:
operation ::= `mhlo.acos` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand tensör üzerinde eleman bazında acos işlemi gerçekleştirir ve result tensörü üretir.
Örnek:
%result = mhlo.acos %operand : tensor<2x2xf32>
Özellikler: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
mhlo.acosh (mhlo::AcoshOp)
Acosh operasyonu
Sözdizimi:
operation ::= `mhlo.acosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand tensörü üzerinde eleman bazında acosh işlemi gerçekleştirir ve bir result tensörü üretir.
Örnek:
%result = mhlo.acosh %operand : tensor<2x2xf32>
Özellikler: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
mhlo.add (mhlo::AddOp)
İşlem ekle
Sözdizimi:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
İki tensör lhs ve rhs eleman bazında toplamını gerçekleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Örnek:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Özellikler: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
rhs | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.add_dependency (mhlo::AddDependencyOp)
Bağımlılık Ekleme işlemi
Sözdizimi:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Bu işlem XLA derleyicisine özeldir, dolayısıyla henüz bir spesifikasyonu yoktur.
Gayriresmi olarak, bu işlem iki işlenen içerir: bir veri işleneni ve bir belirteç. İşlemin çıktısı veri işlenenidir. AfterAll ile kullanıldığında, bu işlem yan etki yaratmayan işlemlerin (belirteç değerleri üretmeyenlerin) sıralanmasını sağlar.
Örnek:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tam sayı nicemlenmiş değerler veya eksen başına tam sayı nicemlenmiş değerlerin sıralı tensörü veya belirteç veya stablehlo belirteci |
token | token veya stablehlo token |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
output | 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tam sayı nicemlenmiş değerler veya eksen başına tam sayı nicemlenmiş değerlerin sıralı tensörü veya belirteç veya stablehlo belirteci |
mhlo.after_all (mhlo::AfterAllOp)
AfterAll işlemi
Sözdizimi:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
inputs üreten işlemlerin, result bağlı herhangi bir işlemden önce yürütülmesini sağlar.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Örnek:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | değişkenli belirteç |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | jeton |
mhlo.all_gather (mhlo::AllGatherOp)
AllGather operasyonu
İşlem ızgarasındaki her işlem grubunda, all_gather_dim boyunca her işlemden gelen işlenen tensörünün değerlerini birleştirir ve bir sonuç tensörü üretir. computation , operands içindeki her işlenen için ayrı ayrı uygulanır ve işlenen başına bir sonuç üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Örnek:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Özellikler: SameOperandsAndResultElementType
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
all_gather_dim | ::mlir::IntegerAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı niteliği |
replica_groups | ::mlir::YoğunIntElementsAttr | 64 bitlik işaretsiz tamsayı öğeleri niteliği |
channel_handle | ::mlir::mhlo::KanalTanıtıcısıAttr | iki 64 bit tam sayı 'handle' ve 'type' |
use_global_device_ids | ::mlir::BirimAttr | birim niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operands | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanlarına sahip karmaşık tipteki sıralı tensörün değişken sayısı veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanlarına sahip karmaşık tipteki sıralı tensörün değişken sayısı veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.all_reduce (mhlo::AllReduceOp)
AllReduce işlemi
İşlem ızgarasındaki her işlem grubunda, her işlemden bir işlenen tensörünün değerlerine bir indirgeme fonksiyonu computation uygulanır ve bir sonuç tensörü üretilir. computation , operands içindeki her işlenen için ayrı ayrı uygulanır ve işlenen başına bir sonuç üretilir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Örnek:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Özellikler: InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
replica_groups | ::mlir::YoğunIntElementsAttr | 64 bitlik işaretsiz tamsayı öğeleri niteliği |
channel_handle | ::mlir::mhlo::KanalTanıtıcısıAttr | iki 64 bit tam sayı 'handle' ve 'type' |
use_global_device_ids | ::mlir::BirimAttr | birim niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operands | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanlarına sahip karmaşık tipteki sıralı tensörün değişken sayısı veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanlarına sahip karmaşık tipteki sıralı tensörün değişken sayısı veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.all_to_all (mhlo::AllToAllOp)
AllToAll işlemi
İşlem ızgarasındaki her işlem grubu içinde, split_dimension boyunca operand tensörünün değerlerini parçalara ayırır, bölünmüş parçaları işlemler arasında dağıtır, dağılmış parçaları concat_dimension boyunca birleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Örnek:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Özellikler: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
split_dimension | ::mlir::IntegerAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı niteliği |
concat_dimension | ::mlir::IntegerAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı niteliği |
split_count | ::mlir::IntegerAttr | Değeri pozitif olan 64 bitlik işaretsiz tam sayı niteliği |
replica_groups | ::mlir::YoğunIntElementsAttr | 64 bitlik işaretsiz tamsayı öğeleri niteliği |
channel_handle | ::mlir::mhlo::KanalTanıtıcısıAttr | iki 64 bit tam sayı 'handle' ve 'type' |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanlarına sahip karmaşık tipteki sıralı tensörün değişken sayısı veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanlarına sahip karmaşık tipteki sıralı tensörün değişken sayısı veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.and (mhlo::AndOp)
Ve operasyon
Sözdizimi:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
İki tensörün lhs ve rhs eleman bazında VE işlemini gerçekleştirir ve bir result tensörü üretir
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Örnek:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Özellikler: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | bool veya 2/4/8/16/32/64 bit tam sayı değerlerinin sıralı tensörü |
rhs | bool veya 2/4/8/16/32/64 bit tam sayı değerlerinin sıralı tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.asin (mhlo::AsinOp)
Asin operasyonu
Sözdizimi:
operation ::= `mhlo.asin` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand tensörü üzerinde eleman bazında asin işlemi gerçekleştirir ve bir result tensörü üretir.
Örnek:
%result = mhlo.asin %operand : tensor<2x2xf32>
Özellikler: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
mhlo.asinh (mhlo::AsinhOp)
Asinh operasyonu
Sözdizimi:
operation ::= `mhlo.asinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand tensörü üzerinde eleman bazında asinh işlemi gerçekleştirir ve bir result tensörü üretir.
Örnek:
%result = mhlo.asinh %operand : tensor<2x2xf32>
Özellikler: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
mhlo.async_done (mhlo::AsyncDoneOp)
AsyncDone işlemi
Bu işlem XLA derleyicisine özeldir, dolayısıyla henüz bir spesifikasyonu yoktur.
Gayri resmi olarak, bu işlem eşzamansız bir hesaplamanın sonuna kadar bloke eder. Eşzamansız hesaplamanın nihai sonucunu döndürür.
Daha fazla bilgi için AsyncStart belgelerine bakın.
Arayüzler: InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
bundle | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tam sayı veya 32/64-bit float elemanları veya tensör başına tam sayı nicemlenmiş veya eksen başına tam sayı nicemlenmiş değerler veya belirteç veya stablehlo belirteç değerleri ile herhangi bir sıralı tensör kombinasyonuna sahip async_bundle |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş veya eksen başına tam sayı nicemlenmiş değerler veya belirteç veya stablehlo belirteç veya 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerler veya 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına karmaşık türdeki herhangi bir kombinasyonla iç içe geçmiş tuple veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına karmaşık türdeki memref eksen başına tam sayı nicemlenmiş değerler veya belirteç değerlerinin sıralı tensörü |
mhlo.async_start (mhlo::AsyncStartOp)
AsyncStart işlemi
Bu işlem XLA derleyicisine özeldir, dolayısıyla henüz bir spesifikasyonu yoktur.
Gayri resmi olarak bu işlem, asenkron bir hesaplamayı başlatır.
Bu, hem eşzamansız beklemeler (DMA'lar gibi) hem de iş parçacığı üzerinde hesaplama içeren işlevler olduğunda kullanılır. Örneğin, bir işlev bir hesaplama, bir DMA, başka bir hesaplama, ikinci bir DMA ve son bir hesaplamadan oluşabilir. Bu, bir async_start, ardından bir async_update ve bir async_done ile temsil edilir. async_start, ilk hesaplamayı iş parçacığı üzerinde yapar ve ardından DMA'yı başlatır. async_update, DMA henüz tamamlanmadıysa tamamlanmasını bekler, ardından işlevdeki ikinci hesaplamayı yürütür ve ikinci DMA'yı başlatır. Son olarak, async_done bu son DMA'yı bekler ve ardından iş parçacığı üzerinde çalıştırılması gereken son hesaplamayı çalıştırır ve bu son hesaplamanın sonucunu döndürür.
operands doğrudan hesaplamaya aktarılır. called_computation , eşzamansız olarak çalıştırılacak fonksiyondur. execution_thread çalıştırılacağı iş parçacığının adıdır. Ana iş parçacığına "main" adı verilir. Tüm iş parçacıklarının adları vardır.
Bu, eşzamansız işlemler arasında ihtiyaç duyulan tüm durumu döndürür. Arabellek atamasından sonra, döndürülen değerler, eşzamansız işlem tarafından ihtiyaç duyulan veya düzenlenen girdileri, sonuçları ve tüm not defterlerini tutmak için gereken alanı temsil eder.
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | düz sembol referans niteliği |
execution_thread | ::mlir::DizeAttr | dize niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş veya eksen başına tam sayı nicemlenmiş değerler veya belirteç veya stablehlo belirteç veya 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerler veya 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına karmaşık türdeki herhangi bir kombinasyonla iç içe geçmiş tuple veya 2/4/8/16/32/64 bit tam sayı veya 32/64 bit float elemanları veya tensör başına karmaşık türdeki memref eksen başına tam sayı nicemlenmiş değerler veya belirteç değerlerinin sıralı tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tam sayı veya 32/64-bit float elemanları veya tensör başına tam sayı nicemlenmiş veya eksen başına tam sayı nicemlenmiş değerler veya belirteç veya stablehlo belirteç değerleri ile herhangi bir sıralı tensör kombinasyonuna sahip async_bundle |
mhlo.async_update (mhlo::AsyncUpdateOp)
AsyncUpdate işlemi
Bu işlem XLA derleyicisine özeldir, dolayısıyla henüz bir spesifikasyonu yoktur.
Gayriresmi olarak, bu işlem bir senkronizasyon bariyerine ulaşana kadar asenkron bir hesaplamayı engeller. Bu işlem, üzerinde işlem yaptıktan sonra bundle değerini döndürür.
Daha fazla bilgi için AsyncStart belgelerine bakın.
Arayüzler: InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
bundle | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tam sayı veya 32/64-bit float elemanları veya tensör başına tam sayı nicemlenmiş veya eksen başına tam sayı nicemlenmiş değerler veya belirteç veya stablehlo belirteç değerleri ile herhangi bir sıralı tensör kombinasyonuna sahip async_bundle |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tam sayı veya 32/64-bit float elemanları veya tensör başına tam sayı nicemlenmiş veya eksen başına tam sayı nicemlenmiş değerler veya belirteç veya stablehlo belirteç değerleri ile herhangi bir sıralı tensör kombinasyonuna sahip async_bundle |
mhlo.atan2 (mhlo::Atan2Op)
Atan2 operasyonu
Sözdizimi:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
lhs ve rhs tensörü üzerinde eleman bazında atan2 işlemi gerçekleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Örnek:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Özellikler: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerlerle 4/6/8/16/32/64 bit float veya karmaşık tipte sıralı tensör |
rhs | 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerlerle 4/6/8/16/32/64 bit float veya karmaşık tipte sıralı tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerlerle 4/6/8/16/32/64 bit float veya karmaşık tipte sıralı tensör |
mhlo.atanh (mhlo::AtanhOp)
Atanh operasyonu
Sözdizimi:
operation ::= `mhlo.atanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand tensörü üzerinde eleman bazında atanh işlemi gerçekleştirir ve bir result tensörü üretir.
Örnek:
%result = mhlo.atanh %operand : tensor<2x2xf32>
Özellikler: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki tensör |
mhlo.batch_norm_grad (mhlo::BatchNormGradOp)
BatchNormGrad işlemi
BatchNormTrainingOp'un çeşitli girdilerinin grad_output geri yayılımını hesaplar ve grad_operand , grad_scale ve grad_offset tensörlerini üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Örnek:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Özellikler: AlwaysSpeculatableImplTrait , InferTensorType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
epsilon | ::mlir::FloatAttr | 32 bitlik float niteliği |
feature_index | ::mlir::IntegerAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
scale | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
mean | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
variance | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
grad_output | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
grad_operand | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
grad_scale | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
grad_offset | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)
BatchNormInference işlemi
operand tensörünü feature_index boyutu hariç tüm boyutlarda normalleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Örnek:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Özellikler: AlwaysSpeculatableImplTrait , InferTensorType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
epsilon | ::mlir::FloatAttr | 32 bitlik float niteliği |
feature_index | ::mlir::IntegerAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
scale | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
offset | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
mean | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
variance | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)
BatchNormTraining işlemi
Toplu ve mekansal boyutlar arasında ortalama ve varyansı hesaplar ve her bir özellik için feature_index boyutundaki operand tensörünü normalleştirir ve batch_mean ve batch_var tensörlerini output üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Örnek:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Özellikler: AlwaysSpeculatableImplTrait , InferTensorType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
epsilon | ::mlir::FloatAttr | 32 bitlik float niteliği |
feature_index | ::mlir::IntegerAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
scale | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
offset | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
output | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
batch_mean | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
batch_var | 4/6/8/16/32/64 bitlik kayan nokta değerlerinin 1D tensörü |
mhlo.bitcast (mhlo::BitcastOp)
Bitcast işlemi
Sözdizimi:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Bu işlem XLA derleyicisine özeldir, dolayısıyla henüz bir spesifikasyonu yoktur.
Gayri resmi olarak bu işlem, girdinin şeklini, elemanların fiziksel düzenlemesinin değişmeyeceği şekilde değiştirir.
Bu işlemin "elemanların fiziksel düzenlemesini" anlamlandırabilmesi için düzen bilgisine ihtiyacı vardır ve MHLO'daki düzen desteği şu anda geliştirme aşamasındadır.
Örnek:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.bitcast_convert (mhlo::BitcastConvertOp)
BitcastConvert işlemi
Sözdizimi:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
operand tensör üzerinde bir bit dönüştürme işlemi gerçekleştirir ve operand tensörünün tüm bitlerinin, result tensörünün türü kullanılarak yeniden yorumlandığı bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Örnek:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.broadcast (mhlo::BroadcastOp)
Yayın operasyonu
Bu işlem StableHLO'dan çıkmak üzere olduğundan, spesifikasyona dahil edilmemiştir: https://github.com/openxla/stablehlo/issues/3
Gayri resmi olarak, bu işlem XLA'nın Yayını ile aynı şeyi yapar: https://www.tensorflow.org/xla/operation_semantics#broadcast
Örnek:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Özellikler: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
broadcast_sizes | ::mlir::YoğunIntElementsAttr | 64 bitlik işaretsiz tamsayı öğeleri niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.broadcast_in_dim (mhlo::BroadcastInDimOp)
BroadcastInDim işlemi
operand tensöründeki verileri kopyalayarak giriş tensörünün boyutlarını ve/veya derecesini genişletir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Örnek:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Özellikler: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
broadcast_dimensions | ::mlir::YoğunIntElementsAttr | 64 bitlik işaretsiz tamsayı öğeleri niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tip veya tensör başına tam sayı nicemlemeli veya eksen başına tam sayı nicemlemeli değerlerin statik şekilli veya tek sınırlı boyutlu tensörü |
mhlo.case (mhlo::CaseOp)
Vaka operasyonu
index değerine bağlı olarak branches yalnızca bir function çalıştırılmasıyla çıktı üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Örnek:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Özellikler: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Arayüzler: InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
index | 32 bitlik işaretsiz tam sayı değerlerinin tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tamsayı veya 32/64 bit float elemanlarına sahip karmaşık tipteki sıralı tensörün değişken sayısı veya tensör başına tamsayı nicemlenmiş değerler veya eksen başına tamsayı nicemlenmiş değerler veya belirteç sıralı tensörü |
mhlo.cbrt (mhlo::CbrtOp)
TCMB operasyonu
Sözdizimi:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand tensörü üzerinde eleman bazında kübik kök işlemi gerçekleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Örnek:
%result = mhlo.cbrt %operand : tensor<4xf32>
Özellikler: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::SonuçDoğruluğuAttr | Tekli işlemler için talep edilen doğruluk. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerlerle 4/6/8/16/32/64 bit float veya karmaşık tipte sıralı tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerlerle 4/6/8/16/32/64 bit float veya karmaşık tipte sıralı tensör |
mhlo.ceil (mhlo::CeilOp)
Tavan operasyonu
Sözdizimi:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Eleman bazında operand tensörünün tavanını gerçekleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Örnek:
%result = mhlo.ceil %operand : tensor<5xf32>
Özellikler: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64 bitlik kayan noktalı veya tensör başına tam sayı nicemlenmiş değerlerin sıralı tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64 bitlik kayan noktalı veya tensör başına tam sayı nicemlenmiş değerlerin sıralı tensörü |
mhlo.cholesky (mhlo::CholeskyOp)
Cholesky operasyonu
Bir dizi matrisin Cholesky ayrıştırılmasını hesaplar.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Örnek:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Özellikler: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
lower | ::mlir::BoolAttr | bool niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
a | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki sıralı tensör |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64 bit float veya 32/64 bit float eleman değerlerine sahip karmaşık tipteki sıralı tensör |
mhlo.clamp (mhlo::ClampOp)
Kelepçe işlemi
Sözdizimi:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
operand tensörünün her bir elemanını minimum ve maksimum değer arasında sıkıştırır ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Örnek:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Özellikler: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
min | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
max | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.collective_broadcast (mhlo::CollectiveBroadcastOp)
Toplu Yayın operasyonu
İşlem ızgarasındaki her işlem grubunda, operand tensörünün değerini kaynak işlemden hedef işleme gönder ve bir result tensörü üret.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Örnek:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Özellikler: CompatibleOperandsAndResultType
Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
replica_groups | ::mlir::YoğunIntElementsAttr | 64 bitlik işaretsiz tamsayı öğeleri niteliği |
channel_handle | ::mlir::mhlo::KanalTanıtıcısıAttr | iki 64 bit tam sayı 'handle' ve 'type' |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.collective_permute (mhlo::CollectivePermuteOp)
TopluPermute işlemi
İşlem ızgarasındaki her işlem grubu içerisinde, operand tensörünün değerini kaynak işlemden hedef işleme gönderir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Örnek:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Özellikler: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
source_target_pairs | ::mlir::YoğunIntElementsAttr | 64 bitlik işaretsiz tamsayı öğeleri niteliği |
channel_handle | ::mlir::mhlo::KanalTanıtıcısıAttr | iki 64 bit tam sayı 'handle' ve 'type' |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
mhlo.compare (mhlo::CompareOp)
İşlemi karşılaştır
Sözdizimi:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
comparison_direction ve compare_type göre lhs ve rhs tensörlerinin eleman bazında karşılaştırmasını gerçekleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Örnek:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Özellikler: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
comparison_direction | ::mlir::mhlo::ComparisonDirectionAttr | Hangi karşılaştırma işleminin yapılacağı. |
compare_type | ::mlir::mhlo::ComparisonTypeAttr | Hangi karşılaştırma türünü kullanacağız? |
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
rhs | 4/6/8/16/32/64-bit float veya bool veya 2/4/8/16/32/64-bit tamsayı veya 32/64-bit float elemanları olan karmaşık tipteki sıralı tensör veya tensör başına tamsayı nicemlenmiş veya eksen başına tamsayı nicemlenmiş değerler |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | bool değerlerinin sıralı tensörü |
mhlo.complex (mhlo::ComplexOp)
Karmaşık operasyon
Sözdizimi:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Gerçek ve sanal değer çiftlerinden ( lhs ve rhs ) karmaşık bir değere eleman bazında dönüşüm gerçekleştirir ve bir result tensörü üretir.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Örnek:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Özellikler: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape , SameOperandsElementType
Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | 32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
rhs | 32/64 bitlik kayan nokta değerlerinin sıralı tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | 32/64 bit kayan nokta eleman değerlerine sahip karmaşık türde sıralı tensör |
mhlo.composite (mhlo::CompositeOp)
Bileşik işlem
Sözdizimi:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Diğer StableHLO işlemlerinden oluşan (bileşen) bir işlemi kapsüller, inputs ve composite_attributes alır ve results üretir. İşlemin semantiği, decomposition özniteliği tarafından uygulanır. composite işlem, program semantiğini değiştirmeden ayrıştırmasıyla değiştirilebilir. Ayrıştırmanın satır içi olarak uygulanmasının aynı işlem semantiğini sağlamadığı durumlarda, custom_call kullanmayı tercih edin.
version alanı (varsayılanı 0 ), bir bileşiğin semantiğinin ne zaman değiştiğini belirtmek için kullanılır.
Bkz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Örnek:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Arayüzler: SymbolUserOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
name | ::mlir::DizeAttr | dize niteliği |
composite_attributes | ::mlir::SözlükAttr | adlandırılmış öznitelik değerlerinin sözlüğü |
decomposition | ::mlir::FlatSymbolRefAttr | düz sembol referans niteliği |
version | ::mlir::IntegerAttr | 32 bitlik işaretsiz tamsayı niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya karmaşık türde 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş veya eksen başına tam sayı nicemlenmiş değerler veya belirteç veya 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya karmaşık türde 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerler veya 4/6/8/16/32/64 bit float veya bool veya 2/4/8/16/32/64 bit tam sayı veya karmaşık türde 32/64 bit float elemanları veya tensör başına tam sayı nicemlenmiş değerler memref'inin herhangi bir kombinasyonuyla iç içe geçmiş tuple veya eksen başına tam sayı nicelikli değerlerin veya belirteç değerlerinin sıralı tensörü |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.concatenate (mhlo::ConcatenateOp)
Concatenate operation
Concatenates a variadic number of tensors in inputs along dimension dimension in the same order as the given arguments and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Örnek:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
İşlenenler:
| İşlenen | Tanım |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.constant (mhlo::ConstantOp)
Constant operation
Produces an output tensor from a constant value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Örnek:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , ConstantLike
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
output | statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convert (mhlo::ConvertOp)
Convert operation
Sözdizimi:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Örnek:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convolution (mhlo::ConvolutionOp)
Evrişim işlemi
Sözdizimi:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs and slices of rhs and produces result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Örnek:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::DiziAttr | Precision Config attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.copy (mhlo::CopyOp)
Copy operation
Sözdizimi:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Örnek:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.cosh (mhlo::CoshOp)
Cosh operation
Sözdizimi:
operation ::= `mhlo.cosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosh operation on operand tensor and produces a result tensor.
Örnek:
%result = mhlo.cosh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.cosine (mhlo::CosineOp)
Cosine operation
Sözdizimi:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Örnek:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.count_leading_zeros (mhlo::ClzOp)
Clz operation
Sözdizimi:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Örnek:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.create_token (mhlo::CreateTokenOp)
CreateToken operation
Sözdizimi:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Örnek:
%output = mhlo.create_token : !mhlo.token
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Sonuçlar:
| Sonuç | Tanım |
|---|---|
output | jeton |
mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Örnek:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.custom_call (mhlo::CustomCallOp)
CustomCall operation
Sözdizimi:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Örnek:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
call_target_name | ::mlir::DizeAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool niteliği |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::DiziAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::DiziAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::DiziAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::DiziAttr | Aliasing attribute for outputs and operands of CustomCall |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
mhlo.divide (mhlo::DivOp)
Div operation
Sözdizimi:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Örnek:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.domain (mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::DizeAttr | string attribute |
exit_metadata | ::mlir::DizeAttr | string attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.dot (mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Örnek:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
precision_config | ::mlir::DiziAttr | Precision Config attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dot_general (mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs and slices of rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Örnek:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Özellikler: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::DiziAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Örnek:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Özellikler: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_conv (mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Örnek:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::DiziAttr | Precision Config attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
d_padding | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_gather (mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Örnek:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_iota (mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Örnek:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Özellikler: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
İşlenenler:
| İşlenen | Tanım |
|---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_pad (mhlo::DynamicPadOp)
DynamicPad operation
Sözdizimi:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.
Özellikler: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)
DynamicReshape operation
Sözdizimi:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Örnek:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Özellikler: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_slice (mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Örnek:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Sözdizimi:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Örnek:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
update | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.einsum (mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Örnek:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
einsum_config | ::mlir::DizeAttr | string attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.erf (mhlo::ErfOp)
Erf operation
Sözdizimi:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand tensor and produces a result tensor.
Örnek:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.exponential (mhlo::ExpOp)
Exp operation
Sözdizimi:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Örnek:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.exponential_minus_one (mhlo::Expm1Op)
Expm1 operation
Sözdizimi:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Örnek:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.fft (mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Örnek:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.floor (mhlo::FloorOp)
Floor operation
Sözdizimi:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Örnek:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
mhlo.fusion (mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::DiziAttr | Aliasing attribute for outputs and operands of Fusion |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
results | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.gather (mhlo::GatherOp)
Gather operation
Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Örnek:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension of the operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Örnek:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element (mhlo::GetTupleElementOp)
GetTupleElement operation
Sözdizimi:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index position of the operand tuple and produces a result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Örnek:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.if (mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
pred | ranked tensor of bool values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.imag (mhlo::ImagOp)
Imag operation
Sözdizimi:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Örnek:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.infeed (mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Örnek:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
infeed_config | ::mlir::DizeAttr | string attribute |
layout | ::mlir::DiziAttr | dizi niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
token | jeton |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.iota (mhlo::IotaOp)
Iota operation
Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Örnek:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.is_finite (mhlo::IsFiniteOp)
IsFinite operation
Sözdizimi:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Örnek:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
x | ranked tensor of 4/6/8/16/32/64-bit float values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
y | ranked tensor of bool values |
mhlo.log (mhlo::LogOp)
Log operation
Sözdizimi:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Örnek:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.log_plus_one (mhlo::Log1pOp)
Log1p operation
Sözdizimi:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Örnek:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.logistic (mhlo::LogisticOp)
Logistic operation
Sözdizimi:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Örnek:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.map (mhlo::MapOp)
Map operation
Applies a map function computation to inputs along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Örnek:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.maximum (mhlo::MaxOp)
Max operation
Sözdizimi:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Örnek:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum (mhlo::MinOp)
Min operation
Sözdizimi:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Örnek:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Sözdizimi:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
shapes | variadic of 1D tensor of index values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply (mhlo::MulOp)
Mul operation
Sözdizimi:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Örnek:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.negate (mhlo::NegOp)
Neg operation
Sözdizimi:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Örnek:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.not (mhlo::NotOp)
Not operation
Sözdizimi:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand of type integer and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Örnek:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Sözdizimi:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Örnek:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.or (mhlo::OrOp)
Or operation
Sözdizimi:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Örnek:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.outfeed (mhlo::OutfeedOp)
Outfeed operation
Writes inputs to the outfeed and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Örnek:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
outfeed_config | ::mlir::DizeAttr | string attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | jeton |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | jeton |
mhlo.pad (mhlo::PadOp)
Pad operation
Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Örnek:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.partition_id (mhlo::PartitionIdOp)
PartitionId operation
Sözdizimi:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Örnek:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt (mhlo::PopulationCountOp)
PopulationCount operation
Sözdizimi:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Örnek:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.power (mhlo::PowOp)
Pow operation
Sözdizimi:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Örnek:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.ragged_dot (mhlo::RaggedDotOp)
Ragged matrix multiplication over a single ragged dimension
This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.
In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n] . Here the ragged dimension is an lhs non-contracting dimension ( m ). The dimensions b and k represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g ).
In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n] . Here the ragged dimension is an lhs/rhs contracting dimension ( k ).
In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n] . Here the ragged dimension is an lhs/rhs batch dimension ( b ).
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
ragged_dot_dimension_numbers | ::mlir::mhlo::RaggedDotDimensionNumbersAttr | Attribute that models the dimension information for ragged dot. |
precision_config | ::mlir::DiziAttr | Precision Config attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
group_sizes | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.real (mhlo::RealOp)
Real operation
Sözdizimi:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Örnek:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Sözdizimi:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Örnek:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Özellikler: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.recv (mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Örnek:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool niteliği |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
token | jeton |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.reduce (mhlo::ReduceOp)
Reduce operation
Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Örnek:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_precision (mhlo::ReducePrecisionOp)
ReducePrecision operation
Sözdizimi:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Örnek:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
output | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.reduce_scatter (mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Örnek:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_window (mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body to windows of inputs and init_values and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Örnek:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.remainder (mhlo::RemOp)
Rem operation
Sözdizimi:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Örnek:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.replica_id (mhlo::ReplicaIdOp)
ReplicaId operation
Sözdizimi:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Örnek:
%result = mhlo.replica_id : tensor<ui32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape (mhlo::ReshapeOp)
Reshape operation
Sözdizimi:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand tensor to a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Örnek:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.return (mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return $results attr-dict ( : type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.rng (mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Örnek:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
a | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
b | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Örnek:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_afz (mhlo::RoundOp)
Round operation
Sözdizimi:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Örnek:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Sözdizimi:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Örnek:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.rsqrt (mhlo::RsqrtOp)
Rsqrt operation
Sözdizimi:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Örnek:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.scatter (mhlo::ScatterOp)
Scatter operation
Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Örnek:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects , SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool niteliği |
unique_indices | ::mlir::BoolAttr | bool niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select (mhlo::SelectOp)
Select operation
Sözdizimi:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Örnek:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
pred | ranked tensor of bool values |
on_true | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
on_false | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select_and_scatter (mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Örnek:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
source | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.send (mhlo::SendOp)
Send operation
Sends inputs to a channel channel_id and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Örnek:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool niteliği |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | jeton |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | jeton |
mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Örnek:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
size | tensor of 32-bit signless integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.shift_left (mhlo::ShiftLeftOp)
ShiftLeft operation
Sözdizimi:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Örnek:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Sözdizimi:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Örnek:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Sözdizimi:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Örnek:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.sign (mhlo::SignOp)
Sign operation
Sözdizimi:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand element-wise and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Örnek:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sine (mhlo::SineOp)
Sine operation
Sözdizimi:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Örnek:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sinh (mhlo::SinhOp)
Sinh operation
Sözdizimi:
operation ::= `mhlo.sinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sinh operation on operand tensor and produces a result tensor.
Örnek:
%result = mhlo.sinh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.slice (mhlo::SliceOp)
Slice operation
Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Örnek:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sort (mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Örnek:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64 bitlik işaretsiz tamsayı niteliği |
is_stable | ::mlir::BoolAttr | bool niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sqrt (mhlo::SqrtOp)
Sqrt operation
Sözdizimi:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Örnek:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.stochastic_convert (mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait , Elementwise
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.subtract (mhlo::SubtractOp)
Subtract operation
Sözdizimi:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Örnek:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| İşlenen | Tanım |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.tan (mhlo::TanOp)
Tan operation
Sözdizimi:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand) element-wise.
Örnek:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.tanh (mhlo::TanhOp)
Tanh operation
Sözdizimi:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Örnek:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.topk (mhlo::TopKOp)
TopK operation
Sözdizimi:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Örnek:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType , RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
k | ::mlir::IntegerAttr | 64 bitlik işaretsiz tamsayı niteliği |
largest | ::mlir::BoolAttr | bool niteliği |
İşlenenler:
| İşlenen | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
values | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
indices | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.torch_index_select (mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Örnek:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
dim | ::mlir::IntegerAttr | 64 bitlik işaretsiz tamsayı niteliği |
batch_dims | ::mlir::IntegerAttr | 64 bitlik işaretsiz tamsayı niteliği |
İşlenenler:
| Operand | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
index | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.trace (mhlo::TraceOp)
Trace operation
Sözdizimi:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Örnek:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
tag | ::mlir::DizeAttr | string attribute |
İşlenenler:
| Operand | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.transpose (mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand tensor using permutation and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Örnek:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
İşlenenler:
| Operand | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.triangular_solve (mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Örnek:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
left_side | ::mlir::BoolAttr | bool niteliği |
lower | ::mlir::BoolAttr | bool niteliği |
unit_diagonal | ::mlir::BoolAttr | bool niteliği |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
İşlenenler:
| Operand | Tanım |
|---|---|
a | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
b | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.tuple (mhlo::TupleOp)
Tuple operation
Sözdizimi:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result tuple from values val .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Örnek:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| Operand | Tanım |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)
UniformDequantize operation
Sözdizimi:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Örnek:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| Operand | Tanım |
|---|---|
operand | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.uniform_quantize (mhlo::UniformQuantizeOp)
UniformQuantize operation
Sözdizimi:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Örnek:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| Operand | Tanım |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
mhlo.while (mhlo::WhileOp)
While operation
Produces the output from executing body function 0 or more times while the cond function outputs true .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Örnek:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface , OpAsmOpInterface
İşlenenler:
| Operand | Tanım |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Sözdizimi:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Nitelikler:
| Bağlanmak | MLIR Tipi | Tanım |
|---|---|---|
delta | ::mlir::IntegerAttr | 64 bitlik işaretsiz tamsayı niteliği |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
| «isimsiz» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor (mhlo::XorOp)
Xor operation
Sözdizimi:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Örnek:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Etkiler: MemoryEffects::Effect{}
İşlenenler:
| Operand | Tanım |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Sonuçlar:
| Sonuç | Tanım |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Nitelikler
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| argTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
| resultIndex | int64_t | |
| resultTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
| isMustAlias | bool |
ChannelHandleAttr
Two 64-bit integers 'handle' and 'type'
Sözdizimi:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| halletmek | int64_t | |
| tip | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Sözdizimi:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Sözdizimi:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| inputBatchDimension | int64_t | |
| inputFeatureDimension | int64_t | |
| inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
| kernelInputFeatureDimension | int64_t | |
| kernelOutputFeatureDimension | int64_t | |
| kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
| outputBatchDimension | int64_t | |
| outputFeatureDimension | int64_t | |
| outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Sözdizimi:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .
An empty value for indices means the whole shape is prefetched.
Örneğin,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| parametre | int64_t | |
| endeksler | ::llvm::ArrayRef<int64_t> | Boyut |
| telafi etmek | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Sözdizimi:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
_Dequantization mode. Only MIN COMBINED is supported.
Sözdizimi:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Sözdizimi:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Sözdizimi:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| lhsPrecisionType | Type | |
| rhsPrecisionType | Type | |
| accumulationType | Type | |
| lhsComponentCount | int64_t | |
| rhsComponentCount | int64_t | |
| numPrimitiveOperations | int64_t | |
| allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
| rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
| lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
| rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
FftTypeAttr
XLA fast fourier transform type.
Sözdizimi:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
Fusion kind
Sözdizimi:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| offsetDims | ::llvm::ArrayRef<int64_t> | Boyut |
| collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Boyut |
| operandBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
| startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
| startIndexMap | ::llvm::ArrayRef<int64_t> | Boyut |
| indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Sözdizimi:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| outputTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
| operandIndex | int64_t | |
| operandTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Sözdizimi:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::Precision | an enum of type Precision |
RaggedDotDimensionNumbersAttr
Attribute that models the dimension information for ragged dot.
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| dotDimensionNumbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
| lhsRaggedDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
| rhsGroupDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
ResultAccuracyAttr
The requested accuracy for unary ops.
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| atol | APFloat | |
| rtol | APFloat | |
| ulps | int64_t | |
| mod | ::mlir::mhlo::ResultAccuracyModeAttr | XLA result accuracy mode. |
ResultAccuracyModeAttr
XLA result accuracy mode.
Sözdizimi:
#mhlo.result_accuracy_mode<
::mlir::mhlo::ResultAccuracyMode # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::ResultAccuracyMode | an enum of type ResultAccuracyMode |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Sözdizimi:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Sözdizimi:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| updateWindowDims | ::llvm::ArrayRef<int64_t> | Boyut |
| insertedWindowDims | ::llvm::ArrayRef<int64_t> | Boyut |
| inputBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
| scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
| scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Boyut |
| indexVectorDim | int64_t |
TransposeAttr
Transpose options
Sözdizimi:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| değer | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Sözdizimi:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.
See HLO_BoundedAttrInterface for documentation for bounds .
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| sınırlar | ::llvm::ArrayRef<int64_t> |
Türler
AsyncBundleType
Opaque collection of other types
Sözdizimi:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parametreler:
| Parametre | C++ type | Tanım |
|---|---|---|
| türleri | ::llvm::ArrayRef<Type> |
Numaralandırmalar
ComparisonDirection
Which comparison operation to perform.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| EQ | 0 | EQ |
| NE | 1 | NE |
| Genel Müdür | 2 | Genel Müdür |
| GT | 3 | GT |
| LE | 4 | LE |
| LT | 5 | LT |
ComparisonType
Which comparison type to use.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| NOTYPE | 0 | NOTYPE |
| BATMADAN YÜZMEK | 1 | BATMADAN YÜZMEK |
| TOTALORDER | 2 | TOTALORDER |
| İMZALANDI | 3 | İMZALANDI |
| İMZASIZ | 4 | İMZASIZ |
CustomCallApiVersion
Custom call API version
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
| API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
| API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
| API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
| API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| HİÇBİRİ | 0 | HİÇBİRİ |
| EN SONUNCU | 1 | EN SONUNCU |
| EN ERKEN | 2 | EN ERKEN |
DequantizeMode
_Dequantization mode. Only MIN COMBINED is supported.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| parçalama | 0 | parçalama |
FftType
XLA fast fourier transform type.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| FFT | 0 | FFT |
| IFFT | 1 | IFFT |
| RFFT | 2 | RFFT |
| IRFFT | 3 | IRFFT |
FusionKind
Fusion kind
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| kLoop | 0 | kLoop |
| kInput | 1 | kInput |
| kOutput | 2 | kOutput |
| kCustom | 3 | kCustom |
Kesinlik
XLA precision for an operand. Has backend specific meaning.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| VARSAYILAN | 0 | VARSAYILAN |
| YÜKSEK | 1 | YÜKSEK |
| HIGHEST | 2 | HIGHEST |
ResultAccuracyMode
XLA result accuracy mode.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| VARSAYILAN | 0 | VARSAYILAN |
| HIGHEST | 1 | HIGHEST |
| TOLERANS | 2 | TOLERANS |
RngAlgorithm
XLA PRNG algorithm to be used.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| VARSAYILAN | 0 | VARSAYILAN |
| THREE_FRY | 1 | THREE_FRY |
| PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| ÜNİFORMA | 1 | ÜNİFORMA |
| NORMAL | 2 | NORMAL |
Transpoze
Transpose options
Davalar:
| Sembol | Değer | Sicim |
|---|---|---|
| TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
| NO_TRANSPOSE | 1 | NO_TRANSPOSE |
| TRANSPOSE | 2 | TRANSPOSE |
| ADJOINT | 3 | ADJOINT |