Junte-se à comunidade SIG TFX-Addons e ajude a tornar o TFX ainda melhor!

Treine e forneça um modelo do TensorFlow com o TensorFlow Serving

Este guia treina um modelo de rede neural para classificar imagens de roupas, como tênis e camisas , salva o modelo treinado e o exibe com o TensorFlow Serving . O foco está no TensorFlow Serving, em vez de modelagem e treinamento no TensorFlow, portanto, para um exemplo completo que se concentra na modelagem e treinamento, consulte o exemplo de Classificação Básica .

Este guia usa tf.keras , uma API de alto nível para criar e treinar modelos no TensorFlow.

import sys

# Confirm that we're using Python 3
assert sys.version_info.major is 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0

import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess

print('TensorFlow version: {}'.format(tf.__version__))

Crie o seu modelo

Importe o conjunto de dados Fashion MNIST

Este guia usa o conjunto de dados Fashion MNIST, que contém 70.000 imagens em tons de cinza em 10 categorias. As imagens mostram peças individuais de roupa em baixa resolução (28 por 28 pixels), como pode ser visto aqui:

Sprite da moda MNIST
Figura 1. Amostras do Fashion-MNIST (por Zalando, MIT License).

O Fashion MNIST pretende ser um substituto imediato para o conjunto de dados MNIST clássico - frequentemente usado como o "Hello, World" dos programas de aprendizado de máquina para visão computacional. Você pode acessar o Fashion MNIST diretamente do TensorFlow, basta importar e carregar os dados.

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0

# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step

train_images.shape: (60000, 28, 28, 1), of float64
test_images.shape: (10000, 28, 28, 1), of float64

Treine e avalie seu modelo

Vamos usar o CNN mais simples possível, já que não estamos focados na parte de modelagem.

model = keras.Sequential([
  keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, 
                      strides=2, activation='relu', name='Conv1'),
  keras.layers.Flatten(),
  keras.layers.Dense(10, name='Dense')
])
model.summary()

testing = False
epochs = 5

model.compile(optimizer='adam', 
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Conv1 (Conv2D)               (None, 13, 13, 8)         80        
_________________________________________________________________
flatten (Flatten)            (None, 1352)              0         
_________________________________________________________________
Dense (Dense)                (None, 10)                13530     
=================================================================
Total params: 13,610
Trainable params: 13,610
Non-trainable params: 0
_________________________________________________________________
Epoch 1/5
1875/1875 [==============================] - 12s 2ms/step - loss: 0.5205 - sparse_categorical_accuracy: 0.8206
Epoch 2/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3819 - sparse_categorical_accuracy: 0.8672
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3472 - sparse_categorical_accuracy: 0.8784
Epoch 4/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3266 - sparse_categorical_accuracy: 0.8847
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3129 - sparse_categorical_accuracy: 0.8882
313/313 [==============================] - 1s 1ms/step - loss: 0.3535 - sparse_categorical_accuracy: 0.8735

Test accuracy: 0.8734999895095825

Salve seu modelo

Para carregar nosso modelo treinado no TensorFlow Serving, primeiro precisamos salvá-lo no formato SavedModel . Isso criará um arquivo protobuf em uma hierarquia de diretórios bem definida e incluirá um número de versão. O TensorFlow Serving nos permite selecionar qual versão de um modelo ou "servível" queremos usar ao fazer solicitações de inferência. Cada versão será exportada para um subdiretório diferente no caminho fornecido.

# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))

tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1
WARNING:absl:Function `_wrapped_model` contains input name(s) Conv1_input with unsupported characters which will be renamed to conv1_input in the SavedModel.
INFO:tensorflow:Assets written to: /tmp/1/assets
INFO:tensorflow:Assets written to: /tmp/1/assets
Saved model:
total 96
drwxr-xr-x 2 kbuilder kbuilder  4096 May 25 09:12 assets
-rw-rw-r-- 1 kbuilder kbuilder  7981 May 25 09:12 keras_metadata.pb
-rw-rw-r-- 1 kbuilder kbuilder 80661 May 25 09:12 saved_model.pb
drwxr-xr-x 2 kbuilder kbuilder  4096 May 25 09:12 variables

Examine o seu modelo salvo

Usaremos o utilitário de linha de comando saved_model_cli para examinar os MetaGraphDefs (os modelos) e SignatureDefs (os métodos que você pode chamar) em nosso SavedModel. Veja esta discussão sobre a CLI SavedModel no Guia do TensorFlow.

saved_model_cli show --dir {export_path} --all
2021-05-25 09:12:04.142378: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['Conv1_input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 28, 28, 1)
        name: serving_default_Conv1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['Dense'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 10)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict

Defined Functions:
  Function Name: '__call__'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

  Function Name: '_default_save_signature'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')

  Function Name: 'call_and_return_all_conditional_losses'
    Option #1
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None

Isso nos diz muito sobre nosso modelo! Neste caso apenas treinamos nosso modelo, então já sabemos as entradas e saídas, mas se não o fizéssemos, esta seria uma informação importante. Não nos diz tudo, como o fato de que se trata de dados de imagem em tons de cinza, por exemplo, mas é um ótimo começo.

Sirva seu modelo com o TensorFlow Serving

Adicione o URI de distribuição do TensorFlow Serving como uma fonte de pacote:

Estamos nos preparando para instalar o TensorFlow Serving usando o Aptitude, já que este Colab é executado em um ambiente Debian. Adicionaremos o tensorflow-model-server à lista de pacotes que o Aptitude conhece. Observe que estamos executando como root.

import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
  SUDO_IF_NEEDED = 'sudo'
else:
  SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2943  100  2943    0     0   5236      0 --:--:-- --:--:-- --:--:--  5236
OK
Hit:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic InRelease
Hit:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates InRelease
Hit:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-backports InRelease
Hit:4 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64  InRelease
Hit:5 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  InRelease
Hit:6 https://nvidia.github.io/nvidia-docker/ubuntu18.04/amd64  InRelease
Get:7 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3012 B]
Ign:8 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  InRelease
Hit:9 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  Release
Hit:10 http://security.ubuntu.com/ubuntu bionic-security InRelease
Get:11 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease [5483 B]
Get:12 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease [5419 B]
Hit:14 http://archive.canonical.com/ubuntu bionic InRelease
Get:15 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [340 B]
Err:11 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease
  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
Err:12 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease
  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
Get:16 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [347 B]
Fetched 14.6 kB in 1s (16.0 kB/s)



106 packages can be upgraded. Run 'apt list --upgradable' to see them.
W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: https://packages.cloud.google.com/apt eip-cloud-bionic InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Failed to fetch https://packages.cloud.google.com/apt/dists/eip-cloud-bionic/InRelease  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Failed to fetch http://packages.cloud.google.com/apt/dists/google-cloud-logging-wheezy/InRelease  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Some index files failed to download. They have been ignored, or old ones used instead.

Instalar o TensorFlow Serving

Isso é tudo que você precisa - uma linha de comando!

{SUDO_IF_NEEDED} apt-get install tensorflow-model-server
The following NEW packages will be installed:
  tensorflow-model-server
0 upgraded, 1 newly installed, 0 to remove and 106 not upgraded.
Need to get 326 MB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.5.1 [326 MB]
Fetched 326 MB in 7s (45.2 MB/s)
Selecting previously unselected package tensorflow-model-server.
(Reading database ... 193390 files and directories currently installed.)
Preparing to unpack .../tensorflow-model-server_2.5.1_all.deb ...
Unpacking tensorflow-model-server (2.5.1) ...
Setting up tensorflow-model-server (2.5.1) ...

Comece a executar o TensorFlow Serving

É aqui que começamos a executar o TensorFlow Serving e carregamos nosso modelo. Depois de carregar, podemos começar a fazer solicitações de inferência usando REST. Existem alguns parâmetros importantes:

  • rest_api_port : a porta que você usará para solicitações REST.
  • model_name : você usará isso na URL de solicitações REST. Pode ser qualquer coisa.
  • model_base_path : este é o caminho para o diretório onde você salvou seu modelo.
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
  --rest_api_port=8501 \
  --model_name=fashion_model \
  --model_base_path="${MODEL_DIR}" >server.log 2>&1
tail server.log

Faça uma solicitação ao seu modelo no TensorFlow Serving

Primeiro, vamos dar uma olhada em um exemplo aleatório de nossos dados de teste.

def show(idx, title):
  plt.figure()
  plt.imshow(test_images[idx].reshape(28,28))
  plt.axis('off')
  plt.title('\n\n{}'.format(title), fontdict={'size': 16})

import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))

png

Ok, isso parece interessante. É difícil para você reconhecer isso? Agora vamos criar o objeto JSON para um lote de três solicitações de inferência e ver como nosso modelo reconhece as coisas:

import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ...  [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}

Faça solicitações REST

Versão mais recente do servable

Enviaremos uma solicitação de previsão como POST para o endpoint REST de nosso servidor e passaremos três exemplos. Pediremos ao nosso servidor para nos fornecer a versão mais recente do nosso serviço, não especificando uma versão particular.

!pip install -q requests

import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
  class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))

Uma versão particular do servable

Agora vamos especificar uma versão particular do nosso servable. Como temos apenas um, vamos selecionar a versão 1. Também examinaremos os três resultados.

headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

for i in range(0,3):
  show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
    class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))