Zadbaj o dobrą organizację dzięki kolekcji Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.

tensorflow :: ops :: ApplyFtrlV2

#include <training_ops.h>

Zaktualizuj „* var” zgodnie ze schematem proksymalnym Ftrl.

streszczenie

grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad_with_shrinkage * grad_with_shrinkage linear + = grad_with_shrinkage + (accum_new ^ (- lr_power) - accum ^ (- lr_power)) / lr_power) * lr) + 2 * l2 var = (znak (liniowy) * l1 - liniowy) / kwadratowy if | liniowy | > l1 else 0,0 accum = accum_new

Argumenty:

  • zakres: obiekt Scope
  • zmienna: powinna pochodzić ze zmiennej ().
  • accum: Powinien pochodzić ze zmiennej ().
  • linear: Powinien pochodzić ze zmiennej ().
  • grad: gradient.
  • lr: współczynnik skalowania. Musi być skalarem.
  • Regulacja l1: L1. Musi być skalarem.
  • l2: regulacja skurczu L2. Musi być skalarem.
  • lr_power: współczynnik skalowania. Musi być skalarem.

Atrybuty opcjonalne (patrz Attrs ):

  • use_locking: Jeśli True , aktualizacja tensorów var i accum będzie chroniona blokadą; w przeciwnym razie zachowanie jest niezdefiniowane, ale może wykazywać mniej rywalizacji.

Zwroty:

  • Output : to samo co „var”.

Konstruktorzy i niszczyciele

ApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power)
ApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power, const ApplyFtrlV2::Attrs & attrs)

Atrybuty publiczne

operation
out

Funkcje publiczne

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Publiczne funkcje statyczne

UseLocking (bool x)

Struktury

tensorflow :: ops :: ApplyFtrlV2 :: Attrs

Opcjonalne ustawienia atrybutów dla ApplyFtrlV2 .

Atrybuty publiczne

operacja

Operation operation

na zewnątrz

::tensorflow::Output out

Funkcje publiczne

ApplyFtrlV2

 ApplyFtrlV2(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input l2_shrinkage,
  ::tensorflow::Input lr_power
)

ApplyFtrlV2

 ApplyFtrlV2(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input l2_shrinkage,
  ::tensorflow::Input lr_power,
  const ApplyFtrlV2::Attrs & attrs
)

węzeł

::tensorflow::Node * node() const 

operator :: tensorflow :: Input

 operator::tensorflow::Input() const 

operator :: tensorflow :: Output

 operator::tensorflow::Output() const 

Publiczne funkcje statyczne

UseLocking

Attrs UseLocking(
  bool x
)