Questa pagina è stata tradotta dall'API Cloud Translation.
Switch to English

tensorflow :: ops :: FusedBatchNormGradV2

#include <nn_ops.h>

Gradiente per la normalizzazione batch.

Sommario

Notare che le dimensioni dei tensori 4D sono definite da "NHWC" o "NCHW". La dimensione dei tensori 1D corrisponde alla dimensione C dei tensori 4D.

Argomenti:

  • scope: un oggetto Scope
  • y_backprop: un tensore 4D per il gradiente rispetto a y.
  • x: un tensore 4D per i dati di input.
  • scala: un tensore 1D per fattore di scala, per scalare la x normalizzata.
  • reserve_space_1: quando is_training è True, un tensore 1D per il batch calcolato significa che deve essere riutilizzato nel calcolo del gradiente. Quando is_training è False, un tensore 1D per la popolazione significa che deve essere riutilizzato sia nel calcolo del gradiente di 1 ° che di 2 ° ordine.
  • reserve_space_2: quando is_training è True, un tensore 1D per la varianza batch calcolata (varianza invertita nel caso cuDNN) da riutilizzare nel calcolo del gradiente. Quando is_training è False, un tensore 1D per la varianza della popolazione deve essere riutilizzato sia nel calcolo del gradiente di 1 ° che di 2 ° ordine.

Attributi opzionali (vedi Attrs ):

  • epsilon: un piccolo numero float aggiunto alla varianza di x.
  • data_format: il formato dei dati per y_backprop, x, x_backprop. O "NHWC" (predefinito) o "NCHW".
  • is_training: un valore bool per indicare che l'operazione è per l'addestramento (impostazione predefinita) o l'inferenza.

Ritorna:

  • Output x_backprop: un tensore 4D per il gradiente rispetto a x.
  • Output scale_backprop: un tensore 1D per il gradiente rispetto alla scala.
  • Output offset_backprop: un tensore 1D per il gradiente rispetto all'offset.
  • Output reserve_space_3: segnaposto inutilizzato per abbinare l'input medio in FusedBatchNorm .
  • Output reserve_space_4: segnaposto inutilizzato per abbinare l'input di varianza in FusedBatchNorm .

Costruttori e distruttori

FusedBatchNormGradV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input y_backprop, :: tensorflow::Input x, :: tensorflow::Input scale, :: tensorflow::Input reserve_space_1, :: tensorflow::Input reserve_space_2)
FusedBatchNormGradV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input y_backprop, :: tensorflow::Input x, :: tensorflow::Input scale, :: tensorflow::Input reserve_space_1, :: tensorflow::Input reserve_space_2, const FusedBatchNormGradV2::Attrs & attrs)

Attributi pubblici

offset_backprop
operation
reserve_space_3
reserve_space_4
scale_backprop
x_backprop

Funzioni statiche pubbliche

DataFormat (StringPiece x)
Epsilon (float x)
IsTraining (bool x)

Structs

tensorflow :: ops :: FusedBatchNormGradV2 :: Attrs

Setter attributi facoltativi per FusedBatchNormGradV2 .

Attributi pubblici

offset_backprop

::tensorflow::Output offset_backprop

operazione

Operation operation

reserve_space_3

::tensorflow::Output reserve_space_3

reserve_space_4

::tensorflow::Output reserve_space_4

scale_backprop

::tensorflow::Output scale_backprop

x_backprop

::tensorflow::Output x_backprop

Funzioni pubbliche

FusedBatchNormGradV2

 FusedBatchNormGradV2(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input y_backprop,
  ::tensorflow::Input x,
  ::tensorflow::Input scale,
  ::tensorflow::Input reserve_space_1,
  ::tensorflow::Input reserve_space_2
)

FusedBatchNormGradV2

 FusedBatchNormGradV2(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input y_backprop,
  ::tensorflow::Input x,
  ::tensorflow::Input scale,
  ::tensorflow::Input reserve_space_1,
  ::tensorflow::Input reserve_space_2,
  const FusedBatchNormGradV2::Attrs & attrs
)

Funzioni statiche pubbliche

Formato dei dati

Attrs DataFormat(
  StringPiece x
)

Epsilon

Attrs Epsilon(
  float x
)

IsTraining

Attrs IsTraining(
  bool x
)