![]() |
Beta distribution.
Inherits From: Distribution
tf.compat.v1.distributions.Beta(
concentration1=None, concentration0=None, validate_args=False,
allow_nan_stats=True, name='Beta'
)
The Beta distribution is defined over the (0, 1)
interval using parameters
concentration1
(aka "alpha") and concentration0
(aka "beta").
Mathematical Details
The probability density function (pdf) is,
pdf(x; alpha, beta) = x**(alpha - 1) (1 - x)**(beta - 1) / Z
Z = Gamma(alpha) Gamma(beta) / Gamma(alpha + beta)
where:
concentration1 = alpha
,concentration0 = beta
,Z
is the normalization constant, and,Gamma
is the gamma function.
The concentration parameters represent mean total counts of a 1
or a 0
,
i.e.,
concentration1 = alpha = mean * total_concentration
concentration0 = beta = (1. - mean) * total_concentration
where mean
in (0, 1)
and total_concentration
is a positive real number
representing a mean total_count = concentration1 + concentration0
.
Distribution parameters are automatically broadcast in all functions; see examples for details.
Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in (Figurnov et al., 2018).
Examples
import tensorflow_probability as tfp
tfd = tfp.distributions
# Create a batch of three Beta distributions.
alpha = [1, 2, 3]
beta = [1, 2, 3]
dist = tfd.Beta(alpha, beta)
dist.sample([4, 5]) # Shape [4, 5, 3]
# `x` has three batch entries, each with two samples.
x = [[.1, .4, .5],
[.2, .3, .5]]
# Calculate the probability of each pair of samples under the corresponding
# distribution in `dist`.
dist.prob(x) # Shape [2, 3]
# Create batch_shape=[2, 3] via parameter broadcast:
alpha = [[1.], [2]] # Shape [2, 1]
beta = [3., 4, 5] # Shape [3]
dist = tfd.Beta(alpha, beta)
# alpha broadcast as: [[1., 1, 1,],
# [2, 2, 2]]
# beta broadcast as: [[3., 4, 5],
# [3, 4, 5]]
# batch_Shape [2, 3]
dist.sample([4, 5]) # Shape [4, 5, 2, 3]
x = [.2, .3, .5]
# x will be broadcast as [[.2, .3, .5],
# [.2, .3, .5]],
# thus matching batch_shape [2, 3].
dist.prob(x) # Shape [2, 3]
Compute the gradients of samples w.r.t. the parameters:
alpha = tf.constant(1.0)
beta = tf.constant(2.0)
dist = tfd.Beta(alpha, beta)
samples = dist.sample(5) # Shape [5]
loss = tf.reduce_mean(tf.square(samples)) # Arbitrary loss function
# Unbiased stochastic gradients of the loss function
grads = tf.gradients(loss, [alpha, beta])
References:
Implicit Reparameterization Gradients: Figurnov et al., 2018 (pdf)
Args | |
---|---|
concentration1
|
Positive floating-point Tensor indicating mean
number of successes; aka "alpha". Implies self.dtype and
self.batch_shape , i.e.,
concentration1.shape = [N1, N2, ..., Nm] = self.batch_shape .
|
concentration0
|
Positive floating-point Tensor indicating mean
number of failures; aka "beta". Otherwise has same semantics as
concentration1 .
|
validate_args
|
Python bool , default False . When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
|
allow_nan_stats
|
Python bool , default True . When True , statistics
(e.g., mean, mode, variance) use the value "NaN " to indicate the
result is undefined. When False , an exception is raised if one or
more of the statistic's batch members are undefined.
|
name
|
Python str name prefixed to Ops created by this class.
|
Attributes | |
---|---|
allow_nan_stats
|
Python bool describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape
|
Shape of a single sample from a single event index as a TensorShape .
May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
concentration0
|
Concentration parameter associated with a 0 outcome.
|
concentration1
|
Concentration parameter associated with a 1 outcome.
|
dtype
|
The DType of Tensor s handled by this Distribution .
|
event_shape
|
Shape of a single sample from a single batch as a TensorShape .
May be partially defined or unknown. |
name
|
Name prepended to all ops created by this Distribution .
|
parameters
|
Dictionary of parameters used to instantiate this Distribution .
|
reparameterization_type
|
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances
|
total_concentration
|
Sum of concentration parameters. |
validate_args
|
Python bool indicating possibly expensive checks are enabled.
|
Methods
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
batch_shape
|
Tensor .
|
cdf
cdf(
value, name='cdf'
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Additional documentation from Beta
:
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
cdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args | |
---|---|
**override_parameters_kwargs
|
String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution
|
A new instance of type(self) initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs) .
|
covariance
covariance(
name='covariance'
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance
shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,
0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function
mapping indices of this distribution's event dimensions to indices of a
length-k'
vector.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
covariance
|
Floating-point Tensor with shape [B1, ..., Bn, k', k']
where the first n dimensions are batch coordinates and
k' = reduce_prod(self.event_shape) .
|
cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by
Q
. Assuming P, Q
are absolutely continuous with respect to
one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shanon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
cross_entropy
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of (Shanon) cross entropy.
|
entropy
entropy(
name='entropy'
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
event_shape
|
Tensor .
|