tf.linalg.LinearOperatorFullMatrix

TensorFlow 1 version View source on GitHub

LinearOperator that wraps a [batch] matrix.

Inherits From: LinearOperator

Used in the notebooks

Used in the tutorials

This operator wraps a [batch] matrix A (which is a Tensor) with shape [B1,...,Bb, M, N] for some b >= 0. The first b indices index a batch member. For every batch index (i1,...,ib), A[i1,...,ib, : :] is an M x N matrix.

# Create a 2 x 2 linear operator.
matrix = [[1., 2.], [3., 4.]]
operator = LinearOperatorFullMatrix(matrix)

operator.to_dense()
==> [[1., 2.]
     [3., 4.]]

operator.shape
==> [2, 2]

operator.log_abs_determinant()
==> scalar Tensor

x = ... Shape [2, 4] Tensor
operator.matmul(x)
==> Shape [2, 4] Tensor

# Create a [2, 3] batch of 4 x 4 linear operators.
matrix = tf.random.normal(shape=[2, 3, 4, 4])
operator = LinearOperatorFullMatrix(matrix)

Shape compatibility

This operator acts on [batch] matrix with compatible shape. x is a batch matrix with compatible shape for matmul and solve if

operator.shape = [B1,...,Bb] + [M, N],  with b >= 0
x.shape =        [B1,...,Bb] + [N, R],  with R >= 0.

Performance

LinearOperatorFullMatrix has exactly the same performance as would be achieved by using standard TensorFlow matrix ops. Intelligent choices are made based on the following initialization hints.

  • If dtype is real, and is_self_adjoint and is_positive_definite, a Cholesky factorization is used for the determinant and solve.

In all cases, suppose operator is a LinearOperatorFullMatrix of shape [M, N], and x.shape = [N, R]. Then

  • operator.matmul(x) is O(M * N * R).
  • If M=N, operator.solve(x) is O(N^3 * R).
  • If M=N, operator.determinant() is O(N^3).

If instead operator and x have shape [B1,...,Bb, M, N] and [B1,...,Bb, N, R], every operation increases in complexity by B1*...*Bb.

Matrix property hints

This LinearOperator is initialized with boolean flags of the form is_X, for X = non_singular, self_adjoint, positive_definite, square. These have the following meaning:

  • If is_X == True, callers should expect the operator to have the property X. This is a promise that should be fulfilled, but is not a runtime assert. For example, finite floating point precision may result in these promises being violated.
  • If is_X == False, callers should expect the operator to not have X.
  • If is_X == None (the default), callers should have no expectation either way.

matrix Shape [B1,...,Bb, M, N] with b >= 0, M, N >= 0. Allowed dtypes: float16, float32, float64, complex64, complex128.
is_non_singular Expect that this operator is non-singular.
is_self_adjoint Expect that this operator is equal to its hermitian transpose.
is_positive_definite Expect that this operator is positive definite, meaning the quadratic form x^H A x has positive real part for all nonzero x. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
is_square Expect that this operator acts like square [batch] matrices.
name A name for this LinearOperator.

TypeError If diag.dtype is not an allowed type.

H Returns the adjoint of the current LinearOperator.

Given A representing this LinearOperator, return A*. Note that calling self.adjoint() and self.H are equivalent.

batch_shape TensorShape of batch dimensions of this LinearOperator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns TensorShape([B1,...,Bb]), equivalent to A.shape[:-2]

domain_dimension Dimension (in the sense of vector spaces) of the domain of this operator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns N.

dtype The DType of Tensors handled by this LinearOperator.
graph_parents List of graph dependencies of this LinearOperator. (deprecated)

is_non_singular

is_positive_definite

is_self_adjoint

is_square Return True/False depending on if this operator is square.
range_dimension Dimension (in the sense of vector spaces) of the range of this operator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns M.

shape TensorShape of this LinearOperator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns TensorShape([B1,...,Bb, M, N]), equivalent to A.shape.

tensor_rank Rank (in the sense of tensors) of matrix corresponding to this operator.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns b + 2.

Methods

add_to_tensor

View source

Add matrix represented by this operator to x. Equivalent to A + x.

Args
x Tensor with same dtype and shape broadcastable to self.shape.
name A name to give this Op.

Returns
A Tensor with broadcast shape and same dtype as self.

adjoint

View source

Returns the adjoint of the current LinearOperator.

Given A representing this LinearOperator, return A*. Note that calling self.adjoint() and self.H are equivalent.

Args
name A name for this Op.

Returns
LinearOperator which represents the adjoint of this LinearOperator.

assert_non_singular

View source

Returns an Op that asserts this operator is non singular.

This operator is considered non-singular if

ConditionNumber < max{100, range_dimension, domain_dimension} * eps,
eps := np.finfo(self.dtype.as_numpy_dtype).eps

Args
name A string name to prepend to created ops.

Returns
An Assert Op, that, when run, will raise an InvalidArgumentError if the operator is singular.

assert_positive_definite

View source

Returns an Op that asserts this operator is positive definite.

Here, positive definite means that the quadratic form x^H A x has positive real part for all nonzero x. Note that we do not require the operator to be self-adjoint to be positive definite.

Args
name A name to give this Op.

Returns
An Assert Op, that, when run, will raise an InvalidArgumentError if the operator is not positive definite.

assert_self_adjoint

View source

Returns an Op that asserts this operator is self-adjoint.

Here we check that this operator is exactly equal to its hermitian transpose.

Args
name A string name to prepend to created ops.

Returns
An Assert Op, that, when run, will raise an InvalidArgumentError if the operator is not self-adjoint.

batch_shape_tensor

View source

Shape of batch dimensions of this operator, determined at runtime.

If this operator acts like the batch matrix A with A.shape = [B1,...,Bb, M, N], then this returns a Tensor holding [B1,...,Bb].

Args
name A name for this Op.

Returns
int32 Tensor

cholesky

View source

Returns a Cholesky factor as a LinearOperator.

Given A representing this LinearOperator, if A is positive definite self-adjoint, return L, where A = L L^T, i.e. the cholesky decomposition.

Args
name A name for this Op.

Returns
LinearOperator which represents the lower triangular matrix in the Cholesky decomposition.

Raises
ValueError When the LinearOperator is not hinted to be positive definite and self adjoint.

cond

View source

Returns the condition number of this linear operator.

Args
name A name for this Op.

Returns
Shape [B1,...,Bb] Tensor of same dtype as self.

determinant

View source

Determinant for every batch member.

Args
name A name for this Op.

Returns
Tensor with shape self.batch