Save the date! Google I/O returns May 18-20

Adds sparse `updates` to an existing tensor according to `indices`.

This operation creates a new tensor by adding sparse `updates` to the passed in `tensor`. This operation is very similar to `tf.scatter_nd_add`, except that the updates are added onto an existing tensor (as opposed to a variable). If the memory for the existing tensor cannot be re-used, a copy is made and updated.

`indices` is an integer tensor containing indices into a new tensor of shape `tensor.shape`. The last dimension of `indices` can be at most the rank of `tensor.shape`:

``````indices.shape[-1] <= tensor.shape.rank
``````

The last dimension of `indices` corresponds to indices into elements (if `indices.shape[-1] = tensor.shape.rank`) or slices (if `indices.shape[-1] < tensor.shape.rank`) along dimension `indices.shape[-1]` of `tensor.shape`. `updates` is a tensor with shape

``````indices.shape[:-1] + tensor.shape[indices.shape[-1]:]
``````

The simplest form of tensor_scatter_add is to add individual elements to a tensor by index. For example, say we want to add 4 elements in a rank-1 tensor with 8 elements.

In Python, this scatter add operation would look like this:

``````    indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
tensor = tf.ones([8], dtype=tf.int32)
print(updated)
``````

The resulting tensor would look like this:

``````[1, 12, 1, 11, 10, 1, 1, 13]
``````

We can also, insert entire slices of a higher rank tensor all at once. For example, if we wanted to insert two slices in the first dimension of a rank-3 tensor with two matrices of new values.

In Python, this scatter add operation would look like this:

``````    indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]],
[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]]])
tensor = tf.ones([4, 4, 4],dtype=tf.int32)
print(updated)
``````

The resulting tensor would look like this:

``````[[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]
``````

Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, the index is ignored.

`tensor` A `Tensor`. Tensor to copy/update.
`indices` A `Tensor`. Must be one of the following types: `int32`, `int64`. Index tensor.
`updates` A `Tensor`. Must have the same type as `tensor`. Updates to scatter into output.
`name` A name for the operation (optional).

A `Tensor`. Has the same type as `tensor`.