Save the date! Google I/O returns May 18-20 Register now


TensorFlow 1 version View source on GitHub

Gradient descent (with momentum) optimizer.

Inherits From: Optimizer

Update rule for parameter w with gradient g when momentum is 0:

w = w - learning_rate * g

Update rule when momentum is larger than 0:

velocity = momentum * velocity - learning_rate * g
w = w * velocity

When nesterov=False, this rule becomes:

velocity = momentum * velocity - learning_rate * g
w = w + momentum * velocity - learning_rate * g

learning_rate A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to 0.01.
momentum float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. Defaults to 0, i.e., vanilla gradient descent.
nesterov boolean. Whether to apply Nesterov momentum. Defaults to False.
name Optional name prefix for the operations created when applying gradients. Defaults to "SGD".
**kwargs Keyword arguments. Allowed to be one of "clipnorm" or "clipvalue". "clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips gradients by value.


opt = tf.keras.optimizers.SGD(learning_rate=0.1)
var = tf.Variable(1.0)
loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
step_count = opt.minimize(loss, [var]).numpy()
# Step is `- learning_rate * grad`
opt = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2)/2.0         # d(loss)/d(var1) = var1
# First step is `- learning_rate * grad`
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
(val0 - val1).numpy()
# On later steps, step-size increases because of momentum
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
(val1 - val2).numpy()


name A non-empty string. The name to use for accumulators created for the optimizer.
**kwargs keyword arguments. Allowed to be {clipnorm, clipvalue, lr, decay}. clipnorm is clip gradients by norm; clipvalue is clip gradients by value, decay is included for backward compatibility to allow time inverse decay of learning rate. lr is included for backward compatibility, recommended to use learning_rate instead.

ValueError If name is malformed.

iterations Variable. The number of training steps this Optimizer has run.
weights Returns variables of this Optimizer based on the order created.



View source

Add a new slot variable for var.


View source


View source

Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that applies gradients.

The method sums gradients from all replicas in the presence of tf.distribute.Strategy by default. You can aggregate gradients yourself by passing experimental_aggregate_gradients=False.


grads = tape.gradient(loss, vars)
grads = tf.distribute.get_replica_context().all_reduce('sum', grads)
# Processing aggregated gradients.
optimizer.apply_gradients(zip(grads, vars),

grads_and_vars List of (gradient, variable) pairs.
name Optional name for the returned operation. Default to the name passed to the Optimizer constructor.
experimental_aggregate_gradients Whether to sum gradients from different replicas in the presense of tf.distribute.Strategy. If False, it's user responsibility to aggregate the gradients. Default to True.

An Operation that applies the specified gradients. The iterations will be automatically increased by 1.

TypeError If grads_and_vars is malformed.
ValueError If none of the variables have gradients.


View source

Creates an optimizer from its config.

This method is the reverse of get_config, capable of instantiating the same optimizer from the config dictionary.

config A Python dictionary, typically the output of get_config.
custom_objects A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter.

An optimizer instance.


View source

Returns the config of the optimizer.

An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.

Python dictionary.


View source

Returns gradients of loss with respect to params.

loss Loss tensor.
params List of variables.

List of gradient tensors.

ValueError In case any gradient cannot be computed (e.g. if gradient function not implemented).


View source


View source

A list of names for this optimizer's slots.


View source


View source

Returns the current weights of the optimizer.

The weights of an optimizer are its state (ie, variables). This function returns the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they were created. The returned list can in turn be used to load state into similarly parameterized optimizers.

For example, the RMSprop optimizer for this simple model returns a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:

opt = tf.keras.optimizers.RMSprop()
m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
m.compile(opt, loss='mse')
data = np.arange(100).reshape(5, 20)
labels = np.zeros(5)
print('Training'); results =, labels)
Training ...