TensorFlow 1 version View source on GitHub

Initializer that generates tensors with a normal distribution.

Inherits From: random_normal_initializer, Initializer

Also available via the shortcut function tf.keras.initializers.random_normal.


# Standalone usage:
initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

mean a python scalar or a scalar tensor. Mean of the random values to generate.
stddev a python scalar or a scalar tensor. Standard deviation of the random values to generate.
seed A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype.



View source

Instantiates an initializer from a configuration dictionary.


initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

config A Python dictionary. It will typically be the output of get_config.

An Initializer instance.


View source

Returns the configuration of the initializer as a JSON-serializable dict.

A JSON-serializable Python dict.


View source

Returns a tensor object initialized to random normal values.

shape Shape of the tensor.
dtype Optional dtype of the tensor. Only floating point types are supported. If not specified, tf.keras.backend.floatx() is used, which default to float32 unless you configured it otherwise (via tf.keras.backend.set_floatx(float_dtype))