Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings


View source on GitHub

A collection of variables used by LinearBanditAgent.

    context_dim, num_actions, use_eigendecomp=False, dtype=tf.float32, name=None


  • context_dim: (int) The context dimension of the bandit environment the agent will be used on.
  • num_actions: (int) The number of actions (arms).
  • use_eigendecomp: (bool) Whether the agent uses eigen decomposition for maintaining its internal state.
  • dtype: The type of the variables. Should be one of tf.float32 and tf.float64.
  • name: (string) the name of this instance.


  • name: Returns the name of this module as passed or determined in the ctor.

    NOTE: This is not the same as the self.name_scope.name which includes parent module names.

  • name_scope: Returns a tf.name_scope instance for this class.

  • submodules: Sequence of all sub-modules.

    Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
assert list(a.submodules) == [b, c]
assert list(b.submodules) == [c]
assert list(c.submodules) == []
  • trainable_variables: Sequence of trainable variables owned by this module and its submodules.

  • variables: Sequence of variables owned by this module and its submodules.



    cls, method

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 64]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([8, 32]))
# ==> <tf.Tensor: ...>
# ==> <tf.Variable ...'my_module/w:0'>


  • method: The method to wrap.


The original method wrapped such that it enters the module's name scope.