tf_agents.bandits.networks.global_and_arm_feature_network.GlobalAndArmCommonTowerNetwork

View source on GitHub

A network that takes global and arm observations and outputs rewards.

Inherits From: Network

This network takes the output of the global and per-arm networks, and leads them through a common network, that in turn outputs reward estimates.

observation_spec The observation spec for the policy that uses this network.
global_network The network that takes the global features as input.
arm_network The network that takes the arm features as input.
common_network The network that takes as input the concatenation of the outputs of the global and the arm networks.
name The name of this instance of GlobalAndArmCommonTowerNetwork.

activity_regularizer Optional regularizer function for the output of this layer.
dtype Dtype used by the weights of the layer, set in the constructor.
dynamic Whether the layer is dynamic (eager-only); set in the constructor.
input Retrieves the input tensor(s) of a layer.

Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.

input_spec InputSpec instance(s) describing the input format for this layer.

When you create a layer subclass, you can set self.input_spec to enable the layer to run input compatibility checks when it is called. Consider a Conv2D layer: it can only be called on a single input tensor of rank 4. As such, you can set, in __init__():

self.input_spec = tf.keras.layers.InputSpec(ndim=4)

Now, if you try to call the layer on an input that isn't rank 4 (for instance, an input of shape (2,), it will raise a nicely-formatted error:

ValueError: Input 0 of layer conv2d is incompatible with the layer:
expected ndim=4, found ndim=1. Full shape received: [2]

Input checks that can be specified via input_spec include:

  • Structure (e.g. a single input, a list of 2 inputs, etc)
  • Shape
  • Rank (ndim)
  • Dtype

For more information, see tf.keras.layers.InputSpec.

input_tensor_spec Returns the spec of the input to the network of type InputSpec.
layers Get the list of all (nested) sub-layers used in this Network.
losses Losses which are associated with this Layer.

Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing losses under a tf.GradientTape will propagate gradients back to the corresponding variables.

metrics List of tf.keras.metrics.Metric instances tracked by the layer.
name Name of the layer (string), set in the constructor.
name_scope Returns a tf.name_scope instance for this class.
non_trainable_weights List of all non-trainable weights tracked by this layer.

Non-trainable weights are not updated during training. They are expected to be updated manually in call().

output Retrieves the output tensor(s) of a layer.

Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.

state_spec

submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable

trainable_variables Sequence of trainable variables owned by this module and its submodules.

trainable_weights List of all trainable weights tracked by this layer.

Trainable weights are updated via gradient descent during training.

variables Returns the list of all layer variables/weights.

Alias of self.weights.

weights Returns the list of all layer variables/weights.

Methods

__call__

View source

A wrapper around Network.call.

A typical call method in a class subclassing Network will have a signature that accepts inputs, as well as other *args and **kwargs. call can optionally also accept step_type and network_state (if state_spec != () is not trivial). e.g.:

def call(self,
         inputs,
         step_type=None,
         network_state=(),
         training=False):
    ...
    return outputs, new_network_state

We will validate the first argument (inputs) against self.input_tensor_spec if one is available.

If a network_state kwarg is given it is also validated against self.state_spec. Similarly, the return value of the call method is expected to be a tuple/list with 2 values: (output, new_state). We validate new_state against self.state_spec.

If no network_state kwarg is given (or if empty network_state = () is given, it is up to call to assume a proper "empty" state, and to emit an appropriate output_state.

Args
inputs The input to self.call, matching self.input_tensor_spec.
*args Additional arguments to self.call.
**kwargs Additional keyword arguments to self.call. These can include network_state and step_type. step_type is required if the network's call requires it. network_state is required if the underlying network's call requires it.

Returns
A tuple (outputs, new_network_state).

add_loss

Add loss tensor(s), potentially dependent on layer inputs.

Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs a and b, some entries in layer.losses may be dependent on a and some on b. This method automatically keeps track of dependencies.

This method can be used inside a subclassed layer or model's call function, in which case losses should be a Tensor or list of Tensors.

Example:

class MyLayer(tf.keras.layers.Layer):
  def call(inputs, self):
    self.add_loss(tf.abs(tf.reduce_mean(inputs)), inputs=True)
    return inputs

This method can also be called directly on a Functional Model during construction. In this case, any loss Tensors passed to this Model must be symbolic and be able to be traced back to the model's Inputs. These losses become part of the model's topology and are tracked in get_config.

Example:

inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Activity regularization.
model.add_loss(tf.abs(tf.reduce_mean(x)))

If this is not the case for your loss (if, for example, your loss references a Variable of one of the model's layers), you can wrap your loss in a zero-argument lambda. These losses are not tracked as part of the model's topology since they can't be serialized.

Example:

inputs = tf.keras.Input(shape=(10,))
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs, outputs)
# Weight regularization.
model.add_loss(lambda: tf.reduce_mean(x.kernel))

The get_losses_for method allows to retrieve the losses relevant to a specific set of inputs.

Arguments
losses Loss tensor, or list/tuple of tensors. Rather than tensors, losses may also be zero-argument callables which create a loss tensor.
inputs Ignored when executing eagerly. If anything other than None is passed, it signals the losses are conditional on some of the layer's inputs, and thus they should only be run where these inputs are available. This is the case for activity regularization losses, for instance. If None is passed, the losses are assumed to be unconditional, and will apply across all dataflows of the layer (e.g. weight regularization losses).

add_metric

Adds metric tensor to the layer.

Args
value Metric tensor.
aggregation Sample-wise metric reduction function. If aggregation=None, it indicates that the metric tensor provided has been aggregated already. eg, bin_acc = BinaryAccuracy(name='acc') followed by model.add_metric(bin_acc(y_true, y_pred)). If aggregation='mean', the given metric tensor will be sample-wise reduced using mean function. eg, model.add_metric(tf.reduce_sum(outputs), name='output_mean', aggregation='mean').
name String metric name.

Raises
ValueError If aggregation is anything other than None or mean.

build

Creates the variables of the layer (optional, for subclass implementers).

This is a method that implementers of subclasses of Layer or Model can override if they need a state-creation step in-between layer instantiation and layer call.

This is typically used to create the weights of Layer subclasses.

Arguments
input_shape Instance of TensorShape, or list of instances of TensorShape if the layer expects a list of inputs (one instance per input).

compute_mask

Computes an output mask tensor.

Arguments
inputs Tensor or list of tensors.
mask Tensor or list of tensors.

Returns
None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape

Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will later be used with inputs that match the input shape provided here.

Arguments
input_shape Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns
An input shape tuple.

copy

View source

Create a shallow copy of this network.

Args
**kwargs Args to override when recreating this network. Commonly overridden args include 'name'.

Returns
A shallow copy of this network.

count_params

Count the total number of scalars composing the weights.

Returns
An integer count.

Raises
ValueError if the layer isn't yet built (in which case its weights aren't yet defined).

create_variables

View source

Force creation of the network's variables.

Args
input_tensor_spec (Optional). Override or provide an input tensor spec when creating variables.
**kwargs Other arguments to network.call(), e.g. training=True.

Raises
ValueError If no input_tensor_spec is provided, and the network did not provide one during construction.

from_config

Creates a layer from its config.

This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).

Arguments
config A Python dictionary, typically the output of get_config.

Returns
A layer instance.

get_config

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Returns
Python dictionary.

get_initial_state

View source

Returns an initial state usable by the network.

Args
batch_size Tensor or constant: size of the batch dimension. Can be None in which case not dimensions gets added.

Returns
A nested object of type self.state_spec containing properly initialized Tensors.

get_layer

View source

Retrieves a layer based on either its name (unique) or index.

If name and index are both provided, index will take precedence. Indices are based on order of horizontal graph traversal (bottom-up).

Arguments
name String, name of layer.
index Integer, index of layer.

Returns
A layer instance.

Raises
ValueError In case of invalid layer name or index.

get_weights

Returns the current weights of the layer.

The weights of a layer represent the state of the layer. This function returns both trainable and non-trainable weight values associated with this layer as a list of Numpy arrays, which can in turn be used to load state into similarly parameterized layers.

For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer:

a = tf.keras.layers.Dense(1,
  kernel_initializer=tf.constant_initializer(1.))
a_out = a(tf.convert_to_tensor([[1., 2., 3.]]))
a.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]
b = tf.keras.layers.Dense(1,
  kernel_initializer=tf.constant_initializer(2.))
b_out = b(tf.convert_to_tensor([[10., 20., 30.]]))
b.get_weights()
[array([[2.],
       [2.],
       [2.]], dtype=float32), array([0.], dtype=float32)]
b.set_weights(a.get_weights())
b.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]

Returns
Weights values as a list of numpy arrays.

set_weights

Sets the weights of the layer, from Numpy arrays.

The weights of a layer represent the state of the layer. This function sets the weight values from numpy arrays. The weight values should be passed in the order they are created by the layer. Note that the layer's weights must be instantiated before calling this function by calling the layer.

For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer:

a = tf.keras.layers.Dense(1,
  kernel_initializer=tf.constant_initializer(1.))
a_out = a(tf.convert_to_tensor([[1., 2., 3.]]))
a.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]
b = tf.keras.layers.Dense(1,
  kernel_initializer=tf.constant_initializer(2.))
b_out = b(tf.convert_to_tensor([[10., 20., 30.]]))
b.get_weights()
[array([[2.],
       [2.],
       [2.]], dtype=float32), array([0.], dtype=float32)]
b.set_weights(a.get_weights())
b.get_weights()
[array([[1.],
       [1.],
       [1.]], dtype=float32), array([0.], dtype=float32)]

Arguments
weights a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).

Raises
ValueError If the provided weights list does not match the layer's specifications.

summary

View source

Prints a string summary of the network.

Args
line_length Total length of printed lines (e.g. set this to adapt the display to different terminal window sizes).
positions Relative or absolute positions of log elements in each line. If not provided, defaults to [.33, .55, .67, 1.].
print_fn Print function to use. Defaults to print. It will be called on each line of the summary. You can set it to a custom function in order to capture the string summary.

Raises
ValueError if summary() is called before the model is built.

with_name_scope

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.