View source on GitHub

A zero-mean Ornstein-Uhlenbeck process.

initial_value Initial value of the process.
damping The rate at which the noise trajectory is damped towards the mean. We must have 0 <= damping <= 1, where a value of 0 gives an undamped random walk and a value of 1 gives uncorrelated Gaussian noise. Hence in most applications a small non-zero value is appropriate.
stddev Standard deviation of the Gaussian component.
seed Seed for random number generation.
scope Scope of the variables.

name Returns the name of this module as passed or determined in the ctor.

name_scope Returns a tf.name_scope instance for this class.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
list(b.submodules) == [c]
list(c.submodules) == []

trainable_variables Sequence of trainable variables owned by this module and its submodules.

variables Sequence of variables owned by this module and its submodules.



Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

method The method to wrap.

The original method wrapped such that it enters the module's name scope.


View source

Call self as a function.