Bu sayfa, Cloud Translation API ile çevrilmiştir.
Switch to English

Sürücüler

TensorFlow.org'da görüntüleyin Google Colab'da çalıştırın Kaynağı GitHub'da görüntüleyin Defteri indirin

Giriş

Takviye öğrenmede yaygın bir model, belirli sayıda adım veya bölüm için bir ortamda bir politika yürütmektir. Bu, örneğin veri toplama, değerlendirme ve temsilcinin videosunu oluştururken olur.

Bu python'da yazmak nispeten kolay olsa da, tf.while yazmak ve hata ayıklamak çok daha karmaşıktır çünkü tf.control_dependencies . tf.while döngüleri, tf.cond ve tf.control_dependencies . Bu nedenle, bu çalışma döngüsü kavramını driver adı verilen bir sınıfa soyutlayarak hem Python hem de TensorFlow'da iyi test edilmiş uygulamalar sağlıyoruz.

Ek olarak, sürücünün her adımda karşılaştığı veriler, Yörünge adlı adlandırılmış bir demete kaydedilir ve yeniden oynatma arabellekleri ve ölçümler gibi bir dizi gözlemciye yayınlanır. Bu veriler, çevreden gözlem, politika tarafından önerilen eylem, elde edilen ödül, mevcut ve sonraki adımın türünü vb. İçerir.

Kurmak

Henüz tf-agent veya gym kurmadıysanız, şunu çalıştırın:

pip install -q tf-agents
pip install -q gym
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.policies import random_py_policy
from tf_agents.policies import random_tf_policy
from tf_agents.metrics import py_metrics
from tf_agents.metrics import tf_metrics
from tf_agents.drivers import py_driver
from tf_agents.drivers import dynamic_episode_driver

tf.compat.v1.enable_v2_behavior()

Python Sürücüler

PyDriver sınıfı, her adımda güncellenecek bir python ortamı, bir python politikası ve bir gözlemci listesi alır. Ana yöntem, aşağıdaki sonlandırma kriterlerinden en az biri karşılanıncaya kadar ortamı, ilkeden eylemleri kullanarak adım adım max_steps run() yöntemidir: Adımların sayısı max_steps ulaşır veya bölüm sayısı max_episodes ulaşır.

Uygulama kabaca şu şekildedir:

class PyDriver(object):

  def __init__(self, env, policy, observers, max_steps=1, max_episodes=1):
    self._env = env
    self._policy = policy
    self._observers = observers or []
    self._max_steps = max_steps or np.inf
    self._max_episodes = max_episodes or np.inf

  def run(self, time_step, policy_state=()):
    num_steps = 0
    num_episodes = 0
    while num_steps < self._max_steps and num_episodes < self._max_episodes:

      # Compute an action using the policy for the given time_step
      action_step = self._policy.action(time_step, policy_state)

      # Apply the action to the environment and get the next step
      next_time_step = self._env.step(action_step.action)

      # Package information into a trajectory
      traj = trajectory.Trajectory(
         time_step.step_type,
         time_step.observation,
         action_step.action,
         action_step.info,
         next_time_step.step_type,
         next_time_step.reward,
         next_time_step.discount)

      for observer in self._observers:
        observer(traj)

      # Update statistics to check termination
      num_episodes += np.sum(traj.is_last())
      num_steps += np.sum(~traj.is_boundary())

      time_step = next_time_step
      policy_state = action_step.state

    return time_step, policy_state

Şimdi, CartPole ortamında rastgele bir politika çalıştırma, sonuçları bir tekrar tamponuna kaydetme ve bazı ölçümleri hesaplama örneğini inceleyelim.

env = suite_gym.load('CartPole-v0')
policy = random_py_policy.RandomPyPolicy(time_step_spec=env.time_step_spec(), 
                                         action_spec=env.action_spec())
replay_buffer = []
metric = py_metrics.AverageReturnMetric()
observers = [replay_buffer.append, metric]
driver = py_driver.PyDriver(
    env, policy, observers, max_steps=20, max_episodes=1)

initial_time_step = env.reset()
final_time_step, _ = driver.run(initial_time_step)

print('Replay Buffer:')
for traj in replay_buffer:
  print(traj)

print('Average Return: ', metric.result())
Replay Buffer:
Trajectory(step_type=array(0, dtype=int32), observation=array([ 0.04572451,  0.02109156, -0.03040793, -0.03130549], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.04614634, -0.17358142, -0.03103404,  0.25163046], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.04267471, -0.3682468 , -0.02600143,  0.53436536], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.03530978, -0.56299365, -0.01531413,  0.8187433 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.0240499 , -0.36766544,  0.00106074,  0.5212832 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.0166966, -0.5628023,  0.0114864,  0.8143002], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.00544055, -0.36783955,  0.02777241,  0.5252522 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.00191624, -0.5633411 ,  0.03827745,  0.8265555 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.01318306, -0.75896496,  0.05480856,  1.1310272 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.02836236, -0.5646018 ,  0.07742911,  0.85602593], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.0396544 , -0.7606886 ,  0.09454963,  1.1720163 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.05486817, -0.956904  ,  0.11798995,  1.4927809 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.07400625, -1.1532475 ,  0.14784557,  1.819857  ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.0970712 , -1.3496711 ,  0.18424271,  2.1545868 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(2, dtype=int32), reward=array(1., dtype=float32), discount=array(0., dtype=float32))
Average Return:  14.0

TensorFlow Sürücüler

Ayrıca TensorFlow'da işlevsel olarak Python sürücülerine benzer, ancak TF ortamları, TF politikaları, TF gözlemcileri vb. Kullanan sürücülerimiz var. Şu anda 2 TensorFlow sürücümüz var: Belirli sayıda (geçerli) ortam adımından sonra sona eren DynamicStepDriver ve DynamicEpisodeDriver , belirli sayıda bölümden sonra sona erer. DynamicEpisode uygulamasının bir örneğine bakalım.

env = suite_gym.load('CartPole-v0')
tf_env = tf_py_environment.TFPyEnvironment(env)

tf_policy = random_tf_policy.RandomTFPolicy(action_spec=tf_env.action_spec(),
                                            time_step_spec=tf_env.time_step_spec())


num_episodes = tf_metrics.NumberOfEpisodes()
env_steps = tf_metrics.EnvironmentSteps()
observers = [num_episodes, env_steps]
driver = dynamic_episode_driver.DynamicEpisodeDriver(
    tf_env, tf_policy, observers, num_episodes=2)

# Initial driver.run will reset the environment and initialize the policy.
final_time_step, policy_state = driver.run()

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
final_time_step TimeStep(step_type=<tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>, reward=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>, discount=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>, observation=<tf.Tensor: shape=(1, 4), dtype=float32, numpy=
array([[ 0.04983833,  0.00221694, -0.04754572,  0.03050179]],
      dtype=float32)>)
Number of Steps:  46
Number of Episodes:  2

# Continue running from previous state
final_time_step, _ = driver.run(final_time_step, policy_state)

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
final_time_step TimeStep(step_type=<tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>, reward=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>, discount=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>, observation=<tf.Tensor: shape=(1, 4), dtype=float32, numpy=
array([[-0.01266267, -0.01962714, -0.03140591, -0.04742253]],
      dtype=float32)>)
Number of Steps:  82
Number of Episodes:  4