Aiuto proteggere la Grande Barriera Corallina con tensorflow sul Kaggle Join Sfida

DQN C51/Arcobaleno

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza la fonte su GitHub Scarica taccuino

introduzione

Questo esempio mostra come addestrare un categoriale DQN (C51) agente sull'ambiente Cartpole utilizzando la libreria TF-Agenti.

Ambiente Cartpole

Assicurati di prendere uno sguardo attraverso il tutorial di DQN come prerequisito. Questo tutorial presuppone la familiarità con il tutorial DQN; si concentrerà principalmente sulle differenze tra DQN e C51.

Impostare

Se non hai ancora installato tf-agent, esegui:

sudo apt-get update
sudo apt-get install -y xvfb ffmpeg freeglut3-dev
pip install 'imageio==2.4.0'
pip install pyvirtualdisplay
pip install tf-agents
pip install pyglet
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import base64
import imageio
import IPython
import matplotlib
import matplotlib.pyplot as plt
import PIL.Image
import pyvirtualdisplay

import tensorflow as tf

from tf_agents.agents.categorical_dqn import categorical_dqn_agent
from tf_agents.drivers import dynamic_step_driver
from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import categorical_q_network
from tf_agents.policies import random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.trajectories import trajectory
from tf_agents.utils import common

# Set up a virtual display for rendering OpenAI gym environments.
display = pyvirtualdisplay.Display(visible=0, size=(1400, 900)).start()

Iperparametri

env_name = "CartPole-v1" # @param {type:"string"}
num_iterations = 15000 # @param {type:"integer"}

initial_collect_steps = 1000  # @param {type:"integer"} 
collect_steps_per_iteration = 1  # @param {type:"integer"}
replay_buffer_capacity = 100000  # @param {type:"integer"}

fc_layer_params = (100,)

batch_size = 64  # @param {type:"integer"}
learning_rate = 1e-3  # @param {type:"number"}
gamma = 0.99
log_interval = 200  # @param {type:"integer"}

num_atoms = 51  # @param {type:"integer"}
min_q_value = -20  # @param {type:"integer"}
max_q_value = 20  # @param {type:"integer"}
n_step_update = 2  # @param {type:"integer"}

num_eval_episodes = 10  # @param {type:"integer"}
eval_interval = 1000  # @param {type:"integer"}

Ambiente

Carica l'ambiente come prima, con uno per la formazione e uno per la valutazione. Qui usiamo CartPole-v1 (contro CartPole-v0 nel tutorial DQN), che ha una ricompensa massima maggiore di 500 anziché 200.

train_py_env = suite_gym.load(env_name)
eval_py_env = suite_gym.load(env_name)

train_env = tf_py_environment.TFPyEnvironment(train_py_env)
eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)

Agente

C51 è un algoritmo di Q-learning basato su DQN. Come DQN, può essere utilizzato in qualsiasi ambiente con uno spazio di azione discreto.

La principale differenza tra C51 e DQN è che invece di prevedere semplicemente il valore Q per ciascuna coppia stato-azione, C51 prevede un modello di istogramma per la distribuzione di probabilità del valore Q:

Esempio C51 Distribuzione

Imparando la distribuzione piuttosto che semplicemente il valore atteso, l'algoritmo è in grado di rimanere più stabile durante l'addestramento, portando a prestazioni finali migliori. Ciò è particolarmente vero in situazioni con distribuzioni di valore bimodali o addirittura multimodali, in cui una singola media non fornisce un'immagine accurata.

Per allenarsi sulle distribuzioni di probabilità piuttosto che sui valori, C51 deve eseguire alcuni calcoli distributivi complessi per calcolare la sua funzione di perdita. Ma non preoccuparti, tutto questo è pensato per te in TF-Agents!

Per creare un agente di C51, abbiamo prima bisogno di creare un CategoricalQNetwork . L'API del CategoricalQNetwork è la stessa di quella del QNetwork , tranne che c'è un ulteriore argomento num_atoms . Questo rappresenta il numero di punti di supporto nelle nostre stime di distribuzione di probabilità. (L'immagine sopra include 10 punti di supporto, ciascuno rappresentato da una barra blu verticale.) Come puoi vedere dal nome, il numero predefinito di atomi è 51.

categorical_q_net = categorical_q_network.CategoricalQNetwork(
    train_env.observation_spec(),
    train_env.action_spec(),
    num_atoms=num_atoms,
    fc_layer_params=fc_layer_params)

Abbiamo anche bisogno di un optimizer per addestrare la rete che abbiamo appena creato, e un train_step_counter variabile per tenere traccia di quante volte è stata aggiornata la rete.

Si noti che un altra differenza significativa dalla vaniglia DqnAgent è che ora abbiamo bisogno di specificare min_q_value e max_q_value come argomenti. Questi specificano i valori più estremi del supporto (in altre parole, il più estremo dei 51 atomi su entrambi i lati). Assicurati di sceglierli in modo appropriato per il tuo ambiente particolare. Qui usiamo -20 e 20.

optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)

train_step_counter = tf.Variable(0)

agent = categorical_dqn_agent.CategoricalDqnAgent(
    train_env.time_step_spec(),
    train_env.action_spec(),
    categorical_q_network=categorical_q_net,
    optimizer=optimizer,
    min_q_value=min_q_value,
    max_q_value=max_q_value,
    n_step_update=n_step_update,
    td_errors_loss_fn=common.element_wise_squared_loss,
    gamma=gamma,
    train_step_counter=train_step_counter)
agent.initialize()

Un'ultima cosa da notare è che abbiamo aggiunto anche un argomento per gli aggiornamenti utilizzare n-step con \(n\) = 2. In single-step Q-learning (\(n\) = 1), si limita a calcolare l'errore tra i fattori Q al passo temporale corrente e al passo temporale successivo utilizzando il ritorno a passo singolo (basato sull'equazione di ottimalità Bellman). Il ritorno a passo singolo è definito come:

\(G_t = R_{t + 1} + \gamma V(s_{t + 1})\)

dove definiamo \(V(s) = \max_a{Q(s, a)}\).

Aggiornamenti N-passo comportano espandendo la funzione passo singolo ritorno standard di \(n\) volte:

\(G_t^n = R_{t + 1} + \gamma R_{t + 2} + \gamma^2 R_{t + 3} + \dots + \gamma^n V(s_{t + n})\)

Aggiornamenti N-step consentire all'agente di bootstrap da ulteriori in futuro, e con il giusto valore di \(n\), questo spesso porta ad imparare più velocemente.

Sebbene gli aggiornamenti C51 e n-passo sono spesso combinati con riproduzione prioritario per formare il nucleo della agente arcobaleno , abbiamo visto nessun miglioramento misurabile di attuare riproduzione priorità. Inoltre, troviamo che quando si combina il nostro agente C51 con gli aggiornamenti n-step da solo, il nostro agente si comporta come gli altri agenti Rainbow sul campione di ambienti Atari che abbiamo testato.

Metriche e valutazione

La metrica più comune utilizzata per valutare una polizza è il rendimento medio. Il rendimento è la somma delle ricompense ottenute durante l'esecuzione di una politica in un ambiente per un episodio, e di solito ne facciamo una media su alcuni episodi. Possiamo calcolare la metrica del rendimento medio come segue.

def compute_avg_return(environment, policy, num_episodes=10):

  total_return = 0.0
  for _ in range(num_episodes):

    time_step = environment.reset()
    episode_return = 0.0

    while not time_step.is_last():
      action_step = policy.action(time_step)
      time_step = environment.step(action_step.action)
      episode_return += time_step.reward
    total_return += episode_return

  avg_return = total_return / num_episodes
  return avg_return.numpy()[0]


random_policy = random_tf_policy.RandomTFPolicy(train_env.time_step_spec(),
                                                train_env.action_spec())

compute_avg_return(eval_env, random_policy, num_eval_episodes)

# Please also see the metrics module for standard implementations of different
# metrics.
20.0

Raccolta dati

Come nell'esercitazione DQN, imposta il buffer di riproduzione e la raccolta dati iniziale con la politica casuale.

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
    data_spec=agent.collect_data_spec,
    batch_size=train_env.batch_size,
    max_length=replay_buffer_capacity)

def collect_step(environment, policy):
  time_step = environment.current_time_step()
  action_step = policy.action(time_step)
  next_time_step = environment.step(action_step.action)
  traj = trajectory.from_transition(time_step, action_step, next_time_step)

  # Add trajectory to the replay buffer
  replay_buffer.add_batch(traj)

for _ in range(initial_collect_steps):
  collect_step(train_env, random_policy)

# This loop is so common in RL, that we provide standard implementations of
# these. For more details see the drivers module.

# Dataset generates trajectories with shape [BxTx...] where
# T = n_step_update + 1.
dataset = replay_buffer.as_dataset(
    num_parallel_calls=3, sample_batch_size=batch_size,
    num_steps=n_step_update + 1).prefetch(3)

iterator = iter(dataset)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/data/experimental/ops/counter.py:66: scan (from tensorflow.python.data.experimental.ops.scan_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.scan(...) instead
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/autograph/impl/api.py:382: ReplayBuffer.get_next (from tf_agents.replay_buffers.replay_buffer) is deprecated and will be removed in a future version.
Instructions for updating:
Use `as_dataset(..., single_deterministic_pass=False) instead.

Formazione dell'agente

Il ciclo di addestramento prevede sia la raccolta di dati dall'ambiente sia l'ottimizzazione delle reti dell'agente. Lungo la strada, valuteremo occasionalmente la politica dell'agente per vedere come stiamo andando.

L'esecuzione di quanto segue richiederà circa 7 minuti.

try:
  %%time
except:
  pass

# (Optional) Optimize by wrapping some of the code in a graph using TF function.
agent.train = common.function(agent.train)

# Reset the train step
agent.train_step_counter.assign(0)

# Evaluate the agent's policy once before training.
avg_return = compute_avg_return(eval_env, agent.policy, num_eval_episodes)
returns = [avg_return]

for _ in range(num_iterations):

  # Collect a few steps using collect_policy and save to the replay buffer.
  for _ in range(collect_steps_per_iteration):
    collect_step(train_env, agent.collect_policy)

  # Sample a batch of data from the buffer and update the agent's network.
  experience, unused_info = next(iterator)
  train_loss = agent.train(experience)

  step = agent.train_step_counter.numpy()

  if step % log_interval == 0:
    print('step = {0}: loss = {1}'.format(step, train_loss.loss))

  if step % eval_interval == 0:
    avg_return = compute_avg_return(eval_env, agent.policy, num_eval_episodes)
    print('step = {0}: Average Return = {1:.2f}'.format(step, avg_return))
    returns.append(avg_return)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py:206: calling foldr_v2 (from tensorflow.python.ops.functional_ops) with back_prop=False is deprecated and will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.foldr(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.foldr(fn, elems))
step = 200: loss = 3.199000597000122
step = 400: loss = 2.083357810974121
step = 600: loss = 1.9901162385940552
step = 800: loss = 1.9055049419403076
step = 1000: loss = 1.7382612228393555
step = 1000: Average Return = 34.40
step = 1200: loss = 1.3624987602233887
step = 1400: loss = 1.548039197921753
step = 1600: loss = 1.4193217754364014
step = 1800: loss = 1.3339967727661133
step = 2000: loss = 1.1471226215362549
step = 2000: Average Return = 91.10
step = 2200: loss = 1.360352873802185
step = 2400: loss = 1.4253160953521729
step = 2600: loss = 0.9550995826721191
step = 2800: loss = 0.9822611808776855
step = 3000: loss = 1.0512573719024658
step = 3000: Average Return = 102.60
step = 3200: loss = 1.131516456604004
step = 3400: loss = 1.0834283828735352
step = 3600: loss = 0.8771724104881287
step = 3800: loss = 0.7854692935943604
step = 4000: loss = 0.7451740503311157
step = 4000: Average Return = 179.10
step = 4200: loss = 0.6963338851928711
step = 4400: loss = 0.8579068183898926
step = 4600: loss = 0.735978364944458
step = 4800: loss = 0.5723521709442139
step = 5000: loss = 0.6422518491744995
step = 5000: Average Return = 138.00
step = 5200: loss = 0.5242955684661865
step = 5400: loss = 0.869032621383667
step = 5600: loss = 0.7798122763633728
step = 5800: loss = 0.745892345905304
step = 6000: loss = 0.7540864944458008
step = 6000: Average Return = 155.80
step = 6200: loss = 0.6851651668548584
step = 6400: loss = 0.7417727112770081
step = 6600: loss = 0.7385923862457275
step = 6800: loss = 0.8823254108428955
step = 7000: loss = 0.6216408014297485
step = 7000: Average Return = 146.90
step = 7200: loss = 0.3905255198478699
step = 7400: loss = 0.5030156373977661
step = 7600: loss = 0.6326021552085876
step = 7800: loss = 0.6071780920028687
step = 8000: loss = 0.49069637060165405
step = 8000: Average Return = 332.70
step = 8200: loss = 0.7194125056266785
step = 8400: loss = 0.7707428932189941
step = 8600: loss = 0.42258384823799133
step = 8800: loss = 0.5215793251991272
step = 9000: loss = 0.6949542164802551
step = 9000: Average Return = 174.10
step = 9200: loss = 0.7312793731689453
step = 9400: loss = 0.5663323402404785
step = 9600: loss = 0.8518731594085693
step = 9800: loss = 0.5256152153015137
step = 10000: loss = 0.578148603439331
step = 10000: Average Return = 147.40
step = 10200: loss = 0.46965712308883667
step = 10400: loss = 0.5685954093933105
step = 10600: loss = 0.5819060802459717
step = 10800: loss = 0.792033851146698
step = 11000: loss = 0.5804982781410217
step = 11000: Average Return = 186.80
step = 11200: loss = 0.4973406195640564
step = 11400: loss = 0.33229681849479675
step = 11600: loss = 0.5267124176025391
step = 11800: loss = 0.585414469242096
step = 12000: loss = 0.6697092652320862
step = 12000: Average Return = 135.30
step = 12200: loss = 0.30732017755508423
step = 12400: loss = 0.490392804145813
step = 12600: loss = 0.28014713525772095
step = 12800: loss = 0.456543892621994
step = 13000: loss = 0.48237597942352295
step = 13000: Average Return = 182.70
step = 13200: loss = 0.5447070598602295
step = 13400: loss = 0.4602382481098175
step = 13600: loss = 0.5659506320953369
step = 13800: loss = 0.47906267642974854
step = 14000: loss = 0.4060840904712677
step = 14000: Average Return = 153.00
step = 14200: loss = 0.6457054018974304
step = 14400: loss = 0.4795544147491455
step = 14600: loss = 0.16895757615566254
step = 14800: loss = 0.5005109906196594
step = 15000: loss = 0.5339224338531494
step = 15000: Average Return = 165.10

Visualizzazione

trame

Possiamo tracciare il reso rispetto ai passaggi globali per vedere le prestazioni del nostro agente. In Cartpole-v1 , l'ambiente dà una taglia di +1 per ogni istante soggiorni polari, e poiché il numero massimo di passi è 500, il massimo rendimento possibile anche 500.

steps = range(0, num_iterations + 1, eval_interval)
plt.plot(steps, returns)
plt.ylabel('Average Return')
plt.xlabel('Step')
plt.ylim(top=550)
(19.485000991821288, 550.0)

png

Video

È utile visualizzare le prestazioni di un agente eseguendo il rendering dell'ambiente a ogni passaggio. Prima di farlo, creiamo prima una funzione per incorporare i video in questa colab.

def embed_mp4(filename):
  """Embeds an mp4 file in the notebook."""
  video = open(filename,'rb').read()
  b64 = base64.b64encode(video)
  tag = '''
  <video width="640" height="480" controls>
    <source src="data:video/mp4;base64,{0}" type="video/mp4">
  Your browser does not support the video tag.
  </video>'''.format(b64.decode())

  return IPython.display.HTML(tag)

Il codice seguente visualizza la politica dell'agente per alcuni episodi:

num_episodes = 3
video_filename = 'imageio.mp4'
with imageio.get_writer(video_filename, fps=60) as video:
  for _ in range(num_episodes):
    time_step = eval_env.reset()
    video.append_data(eval_py_env.render())
    while not time_step.is_last():
      action_step = agent.policy.action(time_step)
      time_step = eval_env.step(action_step.action)
      video.append_data(eval_py_env.render())

embed_mp4(video_filename)
WARNING:root:IMAGEIO FFMPEG_WRITER WARNING: input image is not divisible by macro_block_size=16, resizing from (400, 600) to (400, 608) to ensure video compatibility with most codecs and players. To prevent resizing, make your input image divisible by the macro_block_size or set the macro_block_size to None (risking incompatibility). You may also see a FFMPEG warning concerning speedloss due to data not being aligned.
[swscaler @ 0x5646eec183c0] Warning: data is not aligned! This can lead to a speed loss

C51 tende a fare leggermente meglio di DQN su CartPole-v1, ma la differenza tra i due agenti diventa sempre più significativa in ambienti sempre più complessi. Ad esempio, sul benchmark completo dell'Atari 2600, C51 mostra un miglioramento medio del punteggio del 126% rispetto a DQN dopo la normalizzazione rispetto a un agente casuale. È possibile ottenere ulteriori miglioramenti includendo aggiornamenti in n passaggi.

Per un tuffo profondo nella algoritmo di C51, vedi Un Distribuzionale Prospettiva sulla Reinforcement Learning (2017) .