Halaman ini diterjemahkan oleh Cloud Translation API.
Switch to English

Agen adalah perpustakaan untuk pembelajaran penguatan di TensorFlow.

import tensorflow as tf
from tf_agents.networks import q_network
from tf_agents.agents.dqn import dqn_agent

q_net = q_network.QNetwork(
  train_env.observation_spec(),
  train_env.action_spec(),
  fc_layer_params=(100,))

agent = dqn_agent.DqnAgent(
  train_env.time_step_spec(),
  train_env.action_spec(),
  q_network=q_net,
  optimizer=optimizer,
  td_errors_loss_fn=common.element_wise_squared_loss,
  train_step_counter=tf.Variable(0))

agent.initialize()
Jalankan di Notebook
TF-Agents membuat perancangan, implementasi dan pengujian algoritma RL baru menjadi lebih mudah, dengan menyediakan komponen modular yang teruji dengan baik yang dapat dimodifikasi dan diperluas. Ini memungkinkan iterasi kode cepat, dengan integrasi pengujian dan benchmarking yang baik.