ParallelDynamicStitch

کلاس نهایی عمومی ParallelDynamicStitch

مقادیر تانسورهای «داده» را در یک تانسور واحد قرار دهید.

یک تانسور ادغام شده به گونه ای می سازد که

merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...]
 
برای مثال، اگر هر «شاخص[m]» اسکالر یا برداری باشد، داریم
# Scalar indices:
     merged[indices[m], ...] = data[m][...]
 
     # Vector indices:
     merged[indices[m][i], ...] = data[m][i, ...]
 
هر «data[i].shape» باید با «شاخص[i].shape» مربوطه شروع شود، و بقیه «data[i].shape» باید wrt «i» ثابت باشد. یعنی باید 'data[i].shape = indices[i].shape + ثابت را داشته باشیم. بر حسب این «ثابت»، شکل خروجی این است

merged.shape = [حداکثر(شاخص)] + ثابت

ممکن است مقادیر به صورت موازی ادغام شوند، بنابراین اگر یک شاخص در هر دو «شاخص[m][i]» و «شاخص[n][j]» ظاهر شود، ممکن است نتیجه نامعتبر باشد. این با عملگر معمولی DynamicStitch که رفتار را در آن حالت تعریف می کند متفاوت است.

به عنوان مثال:

indices[0] = 6
     indices[1] = [4, 1]
     indices[2] = [[5, 2], [0, 3]]
     data[0] = [61, 62]
     data[1] = [[41, 42], [11, 12]]
     data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]
     merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],
               [51, 52], [61, 62]]
 
از این روش می توان برای ادغام پارتیشن های ایجاد شده توسط «پارتیشن_دینامیک» همانطور که در مثال زیر نشان داده شده است استفاده کرد:
# Apply function (increments x_i) on elements for which a certain condition
     # apply (x_i != -1 in this example).
     x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4])
     condition_mask=tf.not_equal(x,tf.constant(-1.))
     partitioned_data = tf.dynamic_partition(
         x, tf.cast(condition_mask, tf.int32) , 2)
     partitioned_data[1] = partitioned_data[1] + 1.0
     condition_indices = tf.dynamic_partition(
         tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2)
     x = tf.dynamic_stitch(condition_indices, partitioned_data)
     # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain
     # unchanged.
 

روش های عمومی

خروجی <T>
asOutput ()
دسته نمادین یک تانسور را برمی‌گرداند.
استاتیک <T> ParallelDynamicStitch <T>
ایجاد ( دامنه دامنه ، Iterable< Operand <Integer>> شاخص، Iterable< Operand <T>> داده)
روش کارخانه برای ایجاد کلاسی که عملیات جدید ParallelDynamicStitch را بسته بندی می کند.
خروجی <T>

روش های ارثی

روش های عمومی

خروجی عمومی <T> asOutput ()

دسته نمادین یک تانسور را برمی‌گرداند.

ورودی های عملیات TensorFlow خروجی های عملیات تنسورفلو دیگر هستند. این روش برای به دست آوردن یک دسته نمادین که نشان دهنده محاسبه ورودی است استفاده می شود.

عمومی ایستا ParallelDynamicStitch <T> ایجاد ( دامنه دامنه ، Iterable< عملکرد <Integer>> شاخص، Iterable< Operand <T>> داده)

روش کارخانه برای ایجاد کلاسی که عملیات جدید ParallelDynamicStitch را بسته بندی می کند.

پارامترها
دامنه محدوده فعلی
برمی گرداند
  • یک نمونه جدید از ParallelDynamicStitch

خروجی عمومی <T> ادغام شد ()