De meilleures performances avec tf.function

Voir sur TensorFlow.org Exécuter dans Google Colab Voir la source sur GitHubTélécharger le cahier

Dans TensorFlow 2, l' exécution hâtive est activée par défaut. L'interface utilisateur est intuitive et flexible (l'exécution d'opérations ponctuelles est beaucoup plus facile et plus rapide), mais cela peut se faire au détriment des performances et de la déployabilité.

Vous pouvez utiliser tf.function pour créer des graphiques à partir de vos programmes. Il s'agit d'un outil de transformation qui crée des graphiques de flux de données indépendants de Python à partir de votre code Python. Cela vous aidera à créer des modèles performants et portables, et il est nécessaire d'utiliser SavedModel .

Ce guide vous aidera à conceptualiser le fonctionnement de tf.function sous le capot, afin que vous puissiez l'utiliser efficacement.

Les principaux plats à emporter et recommandations sont les suivants :

  • Déboguez en mode impatient, puis décorez avec @tf.function .
  • Ne comptez pas sur les effets secondaires de Python comme la mutation d'objet ou les ajouts de liste.
  • tf.function fonctionne mieux avec les opérations TensorFlow ; Les appels NumPy et Python sont convertis en constantes.

Installer

import tensorflow as tf

Définissez une fonction d'assistance pour illustrer les types d'erreurs que vous pourriez rencontrer :

import traceback
import contextlib

# Some helper code to demonstrate the kinds of errors you might encounter.
@contextlib.contextmanager
def assert_raises(error_class):
  try:
    yield
  except error_class as e:
    print('Caught expected exception \n  {}:'.format(error_class))
    traceback.print_exc(limit=2)
  except Exception as e:
    raise e
  else:
    raise Exception('Expected {} to be raised but no error was raised!'.format(
        error_class))

Bases

Usage

Une Function que vous définissez (par exemple en appliquant le décorateur @tf.function ) est comme une opération TensorFlow de base : vous pouvez l'exécuter avec impatience ; vous pouvez calculer des gradients ; etc.

@tf.function  # The decorator converts `add` into a `Function`.
def add(a, b):
  return a + b

add(tf.ones([2, 2]), tf.ones([2, 2]))  #  [[2., 2.], [2., 2.]]
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[2., 2.],
       [2., 2.]], dtype=float32)>
v = tf.Variable(1.0)
with tf.GradientTape() as tape:
  result = add(v, 1.0)
tape.gradient(result, v)
<tf.Tensor: shape=(), dtype=float32, numpy=1.0>

Vous pouvez utiliser des Function s dans d'autres Function s.

@tf.function
def dense_layer(x, w, b):
  return add(tf.matmul(x, w), b)

dense_layer(tf.ones([3, 2]), tf.ones([2, 2]), tf.ones([2]))
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[3., 3.],
       [3., 3.],
       [3., 3.]], dtype=float32)>

Function peuvent être plus rapides que le code impatient, en particulier pour les graphiques avec de nombreuses petites opérations. Mais pour les graphiques avec quelques opérations coûteuses (comme les convolutions), vous ne verrez peut-être pas beaucoup d'accélération.

import timeit
conv_layer = tf.keras.layers.Conv2D(100, 3)

@tf.function
def conv_fn(image):
  return conv_layer(image)

image = tf.zeros([1, 200, 200, 100])
# Warm up
conv_layer(image); conv_fn(image)
print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10))
print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10))
print("Note how there's not much difference in performance for convolutions")
Eager conv: 0.006058974999177735
Function conv: 0.005791576000774512
Note how there's not much difference in performance for convolutions

Tracé

Cette section expose le fonctionnement de Function sous le capot, y compris les détails de mise en œuvre qui peuvent changer à l'avenir . Cependant, une fois que vous comprenez pourquoi et quand le traçage se produit, il est beaucoup plus facile d'utiliser efficacement tf.function !

Qu'est-ce que le « traçage » ?

Une Function exécute votre programme dans un TensorFlow Graph . Cependant, un tf.Graph ne peut pas représenter toutes les choses que vous écririez dans un programme TensorFlow impatient. Par exemple, Python prend en charge le polymorphisme, mais tf.Graph nécessite que ses entrées aient un type de données et une dimension spécifiés. Ou vous pouvez effectuer des tâches secondaires comme lire des arguments de ligne de commande, générer une erreur ou travailler avec un objet Python plus complexe ; aucune de ces choses ne peut s'exécuter dans un tf.Graph .

Function comble cette lacune en séparant votre code en deux étapes :

1) Dans la première étape, appelée " tracing ", Function crée un nouveau tf.Graph . Le code Python s'exécute normalement, mais toutes les opérations TensorFlow (comme l'ajout de deux Tensors) sont différées : elles sont capturées par le tf.Graph et non exécutées.

2) Dans la deuxième étape, un tf.Graph qui contient tout ce qui a été différé dans la première étape est exécuté. Cette étape est beaucoup plus rapide que l'étape de traçage.

Selon ses entrées, Function n'exécutera pas toujours la première étape lorsqu'elle est appelée. Voir "Règles de traçage" ci-dessous pour avoir une meilleure idée de la façon dont il effectue cette détermination. Sauter la première étape et n'exécuter que la deuxième étape est ce qui vous donne les hautes performances de TensorFlow.

Lorsque Function décide de tracer, l'étape de traçage est immédiatement suivie de la deuxième étape, donc l'appel de Function crée et exécute à la fois le tf.Graph . Plus tard, vous verrez comment vous pouvez exécuter uniquement l'étape de traçage avec get_concrete_function .

Lorsque vous transmettez des arguments de différents types dans une Function , les deux étapes sont exécutées :

@tf.function
def double(a):
  print("Tracing with", a)
  return a + a

print(double(tf.constant(1)))
print()
print(double(tf.constant(1.1)))
print()
print(double(tf.constant("a")))
print()
Tracing with Tensor("a:0", shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)

Tracing with Tensor("a:0", shape=(), dtype=float32)
tf.Tensor(2.2, shape=(), dtype=float32)

Tracing with Tensor("a:0", shape=(), dtype=string)
tf.Tensor(b'aa', shape=(), dtype=string)

Notez que si vous appelez à plusieurs reprises une Function avec le même type d'argument, TensorFlow ignorera l'étape de traçage et réutilisera un graphique précédemment tracé, car le graphique généré serait identique.

# This doesn't print 'Tracing with ...'
print(double(tf.constant("b")))
tf.Tensor(b'bb', shape=(), dtype=string)

Vous pouvez utiliser pretty_printed_concrete_signatures() pour voir toutes les traces disponibles :

print(double.pretty_printed_concrete_signatures())
double(a)
  Args:
    a: int32 Tensor, shape=()
  Returns:
    int32 Tensor, shape=()

double(a)
  Args:
    a: float32 Tensor, shape=()
  Returns:
    float32 Tensor, shape=()

double(a)
  Args:
    a: string Tensor, shape=()
  Returns:
    string Tensor, shape=()

Jusqu'à présent, vous avez vu que tf.function crée une couche de répartition dynamique en cache sur la logique de traçage de graphe de TensorFlow. Pour être plus précis sur la terminologie :

  • Un tf.Graph est la représentation brute, indépendante du langage et portable d'un calcul TensorFlow.
  • Une ConcreteFunction enveloppe un tf.Graph .
  • Une Function gère un cache de ConcreteFunction s et sélectionne la bonne pour vos entrées.
  • tf.function une fonction Python, renvoyant un objet Function .
  • Le traçage crée un tf.Graph et l'enveloppe dans une ConcreteFunction , également appelée trace.

Règles de traçage

Une Function détermine s'il faut réutiliser une ConcreteFunction tracée en calculant une clé de cache à partir des args et kwargs d'une entrée. Une clé de cache est une clé qui identifie une ConcreteFunction en fonction des args et kwargs d'entrée de l'appel de Function , selon les règles suivantes (qui peuvent changer) :

  • La clé générée pour un tf.Tensor est sa forme et son dtype.
  • La clé générée pour un tf.Variable est un identifiant de variable unique.
  • La clé générée pour une primitive Python (comme int , float , str ) est sa valeur.
  • La clé générée pour les dict imbriqués, les list s, les tuple s, les namedtuple s et les attr s est le tuple aplati des clés de feuilles (voir nest.flatten ). (En raison de cet aplatissement, l'appel d'une fonction concrète avec une structure d'imbrication différente de celle utilisée lors du traçage entraînera une TypeError).
  • Pour tous les autres types Python, la clé est unique à l'objet. De cette façon, une fonction ou une méthode est tracée indépendamment pour chaque instance avec laquelle elle est appelée.

Contrôler le retraçage

Le retraçage, qui se produit lorsque votre Function crée plusieurs traces, permet de garantir que TensorFlow génère des graphiques corrects pour chaque ensemble d'entrées. Cependant, le traçage est une opération coûteuse ! Si votre Function retrace un nouveau graphique pour chaque appel, vous constaterez que votre code s'exécute plus lentement que si vous n'utilisiez pas tf.function .

Pour contrôler le comportement du traçage, vous pouvez utiliser les techniques suivantes :

  • Spécifiez input_signature dans tf.function pour limiter le traçage.
@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))
def next_collatz(x):
  print("Tracing with", x)
  return tf.where(x % 2 == 0, x // 2, 3 * x + 1)

print(next_collatz(tf.constant([1, 2])))
# You specified a 1-D tensor in the input signature, so this should fail.
with assert_raises(ValueError):
  next_collatz(tf.constant([[1, 2], [3, 4]]))

# You specified an int32 dtype in the input signature, so this should fail.
with assert_raises(ValueError):
  next_collatz(tf.constant([1.0, 2.0]))
Tracing with Tensor("x:0", shape=(None,), dtype=int32)
tf.Tensor([4 1], shape=(2,), dtype=int32)
Caught expected exception 
  <class 'ValueError'>:
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/1851403433.py", line 9, in <module>
    next_collatz(tf.constant([[1, 2], [3, 4]]))
ValueError: Python inputs incompatible with input_signature:
  inputs: (
    tf.Tensor(
[[1 2]
 [3 4]], shape=(2, 2), dtype=int32))
  input_signature: (
    TensorSpec(shape=(None,), dtype=tf.int32, name=None)).
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/1851403433.py", line 13, in <module>
    next_collatz(tf.constant([1.0, 2.0]))
ValueError: Python inputs incompatible with input_signature:
  inputs: (
    tf.Tensor([1. 2.], shape=(2,), dtype=float32))
  input_signature: (
    TensorSpec(shape=(None,), dtype=tf.int32, name=None)).
  • Spécifiez une dimension [Aucun] dans tf.TensorSpec pour permettre une flexibilité dans la réutilisation des traces.

    Étant donné que TensorFlow fait correspondre les tenseurs en fonction de leur forme, l'utilisation d'une dimension None comme caractère générique permettra aux Function s de réutiliser les traces pour une entrée de taille variable. Une entrée de taille variable peut se produire si vous avez des séquences de longueurs différentes, ou des images de tailles différentes pour chaque lot (voir les tutoriels Transformer et Deep Dream par exemple).

@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))
def g(x):
  print('Tracing with', x)
  return x

# No retrace!
print(g(tf.constant([1, 2, 3])))
print(g(tf.constant([1, 2, 3, 4, 5])))
Tracing with Tensor("x:0", shape=(None,), dtype=int32)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor([1 2 3 4 5], shape=(5,), dtype=int32)
  • Convertissez les arguments Python en Tensors pour réduire le retraçage.

    Souvent, les arguments Python sont utilisés pour contrôler les hyperparamètres et les constructions de graphes - par exemple, num_layers=10 ou training=True ou nonlinearity='relu' . Donc, si l'argument Python change, il est logique que vous deviez retracer le graphique.

    Cependant, il est possible qu'un argument Python ne soit pas utilisé pour contrôler la construction du graphe. Dans ces cas, une modification de la valeur Python peut déclencher un retraçage inutile. Prenez, par exemple, cette boucle de formation, qu'AutoGraph déroulera dynamiquement. Malgré les multiples traces, le graphe généré est en fait identique, il n'est donc pas nécessaire de retracer.

def train_one_step():
  pass

@tf.function
def train(num_steps):
  print("Tracing with num_steps = ", num_steps)
  tf.print("Executing with num_steps = ", num_steps)
  for _ in tf.range(num_steps):
    train_one_step()

print("Retracing occurs for different Python arguments.")
train(num_steps=10)
train(num_steps=20)

print()
print("Traces are reused for Tensor arguments.")
train(num_steps=tf.constant(10))
train(num_steps=tf.constant(20))
Retracing occurs for different Python arguments.
Tracing with num_steps =  10
Executing with num_steps =  10
Tracing with num_steps =  20
Executing with num_steps =  20

Traces are reused for Tensor arguments.
Tracing with num_steps =  Tensor("num_steps:0", shape=(), dtype=int32)
Executing with num_steps =  10
Executing with num_steps =  20

Si vous devez forcer le retraçage, créez un nouveau Function . Les objets Function séparés sont garantis de ne pas partager de traces.

def f():
  print('Tracing!')
  tf.print('Executing')

tf.function(f)()
tf.function(f)()
Tracing!
Executing
Tracing!
Executing

Obtenir des fonctions concrètes

Chaque fois qu'une fonction est tracée, une nouvelle fonction concrète est créée. Vous pouvez obtenir directement une fonction concrète, en utilisant get_concrete_function .

print("Obtaining concrete trace")
double_strings = double.get_concrete_function(tf.constant("a"))
print("Executing traced function")
print(double_strings(tf.constant("a")))
print(double_strings(a=tf.constant("b")))
Obtaining concrete trace
Executing traced function
tf.Tensor(b'aa', shape=(), dtype=string)
tf.Tensor(b'bb', shape=(), dtype=string)
# You can also call get_concrete_function on an InputSpec
double_strings_from_inputspec = double.get_concrete_function(tf.TensorSpec(shape=[], dtype=tf.string))
print(double_strings_from_inputspec(tf.constant("c")))
tf.Tensor(b'cc', shape=(), dtype=string)

L'impression d'une ConcreteFunction affiche un résumé de ses arguments d'entrée (avec les types) et son type de sortie.

print(double_strings)
ConcreteFunction double(a)
  Args:
    a: string Tensor, shape=()
  Returns:
    string Tensor, shape=()

Vous pouvez également récupérer directement la signature d'une fonction concrète.

print(double_strings.structured_input_signature)
print(double_strings.structured_outputs)
((TensorSpec(shape=(), dtype=tf.string, name='a'),), {})
Tensor("Identity:0", shape=(), dtype=string)

L'utilisation d'une trace concrète avec des types incompatibles génère une erreur

with assert_raises(tf.errors.InvalidArgumentError):
  double_strings(tf.constant(1))
Caught expected exception 
  <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3196284684.py", line 2, in <module>
    double_strings(tf.constant(1))
tensorflow.python.framework.errors_impl.InvalidArgumentError: cannot compute __inference_double_162 as input #0(zero-based) was expected to be a string tensor but is a int32 tensor [Op:__inference_double_162]

Vous remarquerez peut-être que les arguments Python reçoivent un traitement spécial dans la signature d'entrée d'une fonction concrète. Avant TensorFlow 2.3, les arguments Python étaient simplement supprimés de la signature de la fonction concrète. À partir de TensorFlow 2.3, les arguments Python restent dans la signature, mais sont contraints de prendre la valeur définie lors du traçage.

@tf.function
def pow(a, b):
  return a ** b

square = pow.get_concrete_function(a=tf.TensorSpec(None, tf.float32), b=2)
print(square)
ConcreteFunction pow(a, b=2)
  Args:
    a: float32 Tensor, shape=<unknown>
  Returns:
    float32 Tensor, shape=<unknown>
assert square(tf.constant(10.0)) == 100

with assert_raises(TypeError):
  square(tf.constant(10.0), b=3)
Caught expected exception 
  <class 'TypeError'>:
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 1721, in _call_impl
    cancellation_manager)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 1765, in _call_with_flat_signature
    raise TypeError(f"{self._flat_signature_summary()} got unexpected "
TypeError: pow(a) got unexpected keyword arguments: b.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/2310937119.py", line 4, in <module>
    square(tf.constant(10.0), b=3)
TypeError: ConcreteFunction pow(a, b) was constructed with int value 2 in b, but was called with int value 3.

Obtention de graphiques

Chaque fonction concrète est un wrapper appelable autour d'un tf.Graph . Bien que vous n'ayez normalement pas besoin de récupérer l'objet tf.Graph réel, vous pouvez l'obtenir facilement à partir de n'importe quelle fonction concrète.

graph = double_strings.graph
for node in graph.as_graph_def().node:
  print(f'{node.input} -> {node.name}')
[] -> a
['a', 'a'] -> add
['add'] -> Identity

Débogage

En général, le débogage du code est plus facile en mode impatient qu'à l'intérieur de tf.function . Vous devez vous assurer que votre code s'exécute sans erreur en mode impatient avant de décorer avec tf.function . Pour faciliter le processus de débogage, vous pouvez appeler tf.config.run_functions_eagerly(True) pour désactiver et réactiver globalement tf.function .

Lorsque vous recherchez des problèmes qui n'apparaissent que dans tf.function , voici quelques conseils :

  • Les anciens appels print Python ne s'exécutent que pendant le traçage, ce qui vous aide à savoir quand votre fonction est (re)tracée.
  • Les appels tf.print s'exécuteront à chaque fois et peuvent vous aider à retrouver les valeurs intermédiaires pendant l'exécution.
  • tf.debugging.enable_check_numerics est un moyen simple de retrouver où les NaN et les Inf sont créés.
  • pdb (le débogueur Python ) peut vous aider à comprendre ce qui se passe pendant le traçage. (Mise en garde : pdb vous déposera dans le code source transformé par AutoGraph.)

Transformations AutoGraph

AutoGraph est une bibliothèque activée par défaut dans tf.function , et transforme un sous-ensemble de code Python impatient en opérations TensorFlow compatibles avec les graphes. Cela inclut le flux de contrôle comme if , for , while .

Les opérations TensorFlow telles que tf.cond et tf.while_loop continuent de fonctionner, mais le flux de contrôle est souvent plus facile à écrire et à comprendre lorsqu'il est écrit en Python.

# A simple loop

@tf.function
def f(x):
  while tf.reduce_sum(x) > 1:
    tf.print(x)
    x = tf.tanh(x)
  return x

f(tf.random.uniform([5]))
[0.666458249 0.713946581 0.723879576 0.330758929 0.184087753]
[0.582645297 0.613145649 0.619306684 0.319202513 0.182036072]
[0.524585426 0.546337605 0.550645113 0.308785647 0.18005164]
[0.481231302 0.497770309 0.501003504 0.299331933 0.178130865]
[0.447229207 0.460361809 0.462906033 0.290701121 0.176270396]
[0.419618756 0.430379033 0.432449728 0.282779962 0.174467146]
[0.396609187 0.405638 0.407366514 0.275476 0.172718227]
[0.377043903 0.384762734 0.386234313 0.268712848 0.17102097]
[0.360137492 0.366836458 0.368109286 0.262426734 0.169372901]
[0.345335096 0.351221472 0.352336824 0.256563932 0.167771652]
[0.332231969 0.337458342 0.338446289 0.251078814 0.166215062]
[0.320524871 0.325206399 0.326089561 0.24593246 0.164701089]
[0.309981436 0.314206958 0.31500268 0.241091311 0.163227797]
[0.300420195 0.304259449 0.304981351 0.236526251 0.161793426]
[0.291697085 0.295205742 0.295864582 0.232211992 0.160396278]
[0.283696055 0.286919087 0.287523568 0.228126258 0.159034774]
[0.276322395 0.279296666 0.27985391 0.224249557 0.157707423]
[0.269497961 0.272254 0.272769839 0.220564634 0.15641281]
[0.263157606 0.265720904 0.266200244 0.21705614 0.155149609]
[0.257246554 0.259638608 0.260085613 0.213710397 0.153916568]
[0.251718313 0.25395745 0.254375577 0.210515186 0.152712509]
[0.246533215 0.248635098 0.249027327 0.207459539 0.151536316]
[0.241657034 0.243635193 0.244004101 0.204533577 0.15038693]
[0.237060249 0.238926381 0.239274174 0.201728329 0.149263337]
[0.232717097 0.234481394 0.234810054 0.199035719 0.148164615]
[0.228605017 0.230276451 0.230587661 0.196448416 0.147089839]
[0.224704206 0.226290658 0.22658591 0.193959698 0.14603813]
[0.220997125 0.222505584 0.222786173 0.191563457 0.145008713]
<tf.Tensor: shape=(5,), dtype=float32, numpy=
array([0.21746822, 0.21890487, 0.21917202, 0.18925412, 0.14400077],
      dtype=float32)>

Si vous êtes curieux, vous pouvez inspecter le code généré par l'autographe.

print(tf.autograph.to_code(f.python_function))
def tf__f(x):
    with ag__.FunctionScope('f', 'fscope', ag__.ConversionOptions(recursive=True, user_requested=True, optional_features=(), internal_convert_user_code=True)) as fscope:
        do_return = False
        retval_ = ag__.UndefinedReturnValue()

        def get_state():
            return (x,)

        def set_state(vars_):
            nonlocal x
            (x,) = vars_

        def loop_body():
            nonlocal x
            ag__.converted_call(ag__.ld(tf).print, (ag__.ld(x),), None, fscope)
            x = ag__.converted_call(ag__.ld(tf).tanh, (ag__.ld(x),), None, fscope)

        def loop_test():
            return (ag__.converted_call(ag__.ld(tf).reduce_sum, (ag__.ld(x),), None, fscope) > 1)
        ag__.while_stmt(loop_test, loop_body, get_state, set_state, ('x',), {})
        try:
            do_return = True
            retval_ = ag__.ld(x)
        except:
            do_return = False
            raise
        return fscope.ret(retval_, do_return)

Conditionnels

AutoGraph convertira certaines instructions if <condition> en appels tf.cond équivalents. Cette substitution est faite si <condition> est un Tenseur. Sinon, l'instruction if est exécutée comme une condition Python.

Une condition Python s'exécute pendant le traçage, donc exactement une branche de la condition sera ajoutée au graphique. Sans AutoGraph, ce graphique tracé ne pourrait pas prendre la branche alternative s'il existe un flux de contrôle dépendant des données.

tf.cond trace et ajoute les deux branches de la condition au graphe, en sélectionnant dynamiquement une branche au moment de l'exécution. Le traçage peut avoir des effets secondaires imprévus ; consultez les effets de traçage AutoGraph pour plus d'informations.

@tf.function
def fizzbuzz(n):
  for i in tf.range(1, n + 1):
    print('Tracing for loop')
    if i % 15 == 0:
      print('Tracing fizzbuzz branch')
      tf.print('fizzbuzz')
    elif i % 3 == 0:
      print('Tracing fizz branch')
      tf.print('fizz')
    elif i % 5 == 0:
      print('Tracing buzz branch')
      tf.print('buzz')
    else:
      print('Tracing default branch')
      tf.print(i)

fizzbuzz(tf.constant(5))
fizzbuzz(tf.constant(20))
Tracing for loop
Tracing fizzbuzz branch
Tracing fizz branch
Tracing buzz branch
Tracing default branch
1
2
fizz
4
buzz
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
16
17
fizz
19
buzz

Consultez la documentation de référence pour connaître les restrictions supplémentaires sur les instructions if converties par AutoGraph.

Boucles

AutoGraph convertira certaines instructions for et while en opérations de bouclage TensorFlow équivalentes, comme tf.while_loop . Si elle n'est pas convertie, la boucle for ou while est exécutée comme une boucle Python.

Cette substitution est effectuée dans les situations suivantes :

  • for x in y : si y est un Tensor, convertir en tf.while_loop . Dans le cas particulier où y est un tf.data.Dataset , une combinaison d'opérations tf.data.Dataset est générée.
  • while <condition> : si <condition> est un Tensor, convertir en tf.while_loop .

Une boucle Python s'exécute pendant le traçage, ajoutant des opérations supplémentaires au tf.Graph pour chaque itération de la boucle.

Une boucle TensorFlow trace le corps de la boucle et sélectionne dynamiquement le nombre d'itérations à exécuter au moment de l'exécution. Le corps de la boucle n'apparaît qu'une seule fois dans le tf.Graph généré.

Consultez la documentation de référence pour connaître les restrictions supplémentaires sur les instructions for et while converties par AutoGraph.

Boucle sur les données Python

Un écueil courant consiste à boucler sur les données Python/NumPy dans un tf.function . Cette boucle s'exécutera pendant le processus de traçage, en ajoutant une copie de votre modèle au tf.Graph pour chaque itération de la boucle.

Si vous souhaitez encapsuler l'intégralité de la boucle d'apprentissage dans tf.function , le moyen le plus sûr consiste à encapsuler vos données dans un tf.data.Dataset afin qu'AutoGraph déroule dynamiquement la boucle d'apprentissage.

def measure_graph_size(f, *args):
  g = f.get_concrete_function(*args).graph
  print("{}({}) contains {} nodes in its graph".format(
      f.__name__, ', '.join(map(str, args)), len(g.as_graph_def().node)))

@tf.function
def train(dataset):
  loss = tf.constant(0)
  for x, y in dataset:
    loss += tf.abs(y - x) # Some dummy computation.
  return loss

small_data = [(1, 1)] * 3
big_data = [(1, 1)] * 10
measure_graph_size(train, small_data)
measure_graph_size(train, big_data)

measure_graph_size(train, tf.data.Dataset.from_generator(
    lambda: small_data, (tf.int32, tf.int32)))
measure_graph_size(train, tf.data.Dataset.from_generator(
    lambda: big_data, (tf.int32, tf.int32)))
train([(1, 1), (1, 1), (1, 1)]) contains 11 nodes in its graph
train([(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)]) contains 32 nodes in its graph
train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 6 nodes in its graph
train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 6 nodes in its graph

Lorsque vous encapsulez des données Python/NumPy dans un ensemble de données, faites attention à tf.data.Dataset.from_generator par rapport à tf.data.Dataset.from_tensors . Le premier conservera les données dans Python et les récupérera via tf.py_function , ce qui peut avoir des implications sur les performances, tandis que le second regroupera une copie des données sous la forme d'un grand nœud tf.constant() dans le graphique, ce qui peut avoir des implications sur la mémoire.

La lecture de données à partir de fichiers via TFRecordDataset , CsvDataset , etc. est le moyen le plus efficace de consommer des données, car TensorFlow lui-même peut gérer le chargement et la prélecture asynchrones des données, sans avoir à impliquer Python. Pour en savoir plus, consultez le tf.data : Build TensorFlow input pipelines .

Accumuler des valeurs dans une boucle

Un modèle courant consiste à accumuler des valeurs intermédiaires à partir d'une boucle. Normalement, cela se fait en ajoutant à une liste Python ou en ajoutant des entrées à un dictionnaire Python. Cependant, comme il s'agit d'effets secondaires Python, ils ne fonctionneront pas comme prévu dans une boucle déroulée dynamiquement. Utilisez tf.TensorArray pour accumuler les résultats d'une boucle déroulée dynamiquement.

batch_size = 2
seq_len = 3
feature_size = 4

def rnn_step(inp, state):
  return inp + state

@tf.function
def dynamic_rnn(rnn_step, input_data, initial_state):
  # [batch, time, features] -> [time, batch, features]
  input_data = tf.transpose(input_data, [1, 0, 2])
  max_seq_len = input_data.shape[0]

  states = tf.TensorArray(tf.float32, size=max_seq_len)
  state = initial_state
  for i in tf.range(max_seq_len):
    state = rnn_step(input_data[i], state)
    states = states.write(i, state)
  return tf.transpose(states.stack(), [1, 0, 2])

dynamic_rnn(rnn_step,
            tf.random.uniform([batch_size, seq_len, feature_size]),
            tf.zeros([batch_size, feature_size]))
<tf.Tensor: shape=(2, 3, 4), dtype=float32, numpy=
array([[[0.06309307, 0.9938811 , 0.90789986, 0.42136216],
        [0.44997275, 1.9107027 , 1.0716251 , 0.717237  ],
        [0.6026064 , 2.1622117 , 1.4164022 , 1.4153863 ]],

       [[0.04946005, 0.69127274, 0.56848884, 0.22406638],
        [0.8148316 , 1.0278493 , 0.6207781 , 1.1935129 ],
        [0.9178308 , 1.320889  , 0.989761  , 2.0120025 ]]], dtype=float32)>

Limites

TensorFlow Function a quelques limitations de par sa conception dont vous devez être conscient lors de la conversion d'une fonction Python en Function .

Exécution des effets secondaires de Python

Les effets secondaires, comme l'impression, l'ajout aux listes et la mutation des variables globales, peuvent se comporter de manière inattendue à l'intérieur d'un Function , s'exécutant parfois deux fois ou pas tous. Ils ne se produisent que la première fois que vous appelez une Function avec un ensemble d'entrées. Ensuite, le tf.Graph tracé est réexécuté, sans exécuter le code Python.

La règle générale est d'éviter de s'appuyer sur les effets secondaires de Python dans votre logique et de ne les utiliser que pour déboguer vos traces. Sinon, les API TensorFlow comme tf.data , tf.print , tf.summary , tf.Variable.assign et tf.TensorArray sont le meilleur moyen de garantir que votre code sera exécuté par l'environnement d'exécution TensorFlow à chaque appel.

@tf.function
def f(x):
  print("Traced with", x)
  tf.print("Executed with", x)

f(1)
f(1)
f(2)
Traced with 1
Executed with 1
Executed with 1
Traced with 2
Executed with 2

Si vous souhaitez exécuter du code Python lors de chaque invocation d'un Function , tf.py_function est une trappe de sortie. L'inconvénient de tf.py_function est qu'il n'est pas portable ou particulièrement performant, ne peut pas être enregistré avec SavedModel et ne fonctionne pas bien dans les configurations distribuées (multi-GPU, TPU). De plus, puisque tf.py_function doit être câblé dans le graphe, il convertit toutes les entrées/sorties en tenseurs.

Modification des variables globales et libres de Python

La modification des variables globales et libres de Python compte comme un effet secondaire de Python, donc cela ne se produit que pendant le traçage.

external_list = []

@tf.function
def side_effect(x):
  print('Python side effect')
  external_list.append(x)

side_effect(1)
side_effect(1)
side_effect(1)
# The list append only happened once!
assert len(external_list) == 1
Python side effect

Parfois, les comportements inattendus sont très difficiles à remarquer. Dans l'exemple ci-dessous, le counter est destiné à sauvegarder l'incrément d'une variable. Cependant, comme il s'agit d'un entier python et non d'un objet TensorFlow, sa valeur est capturée lors de la première trace. Lorsque la tf.function est utilisée, l' assign_add sera enregistré inconditionnellement dans le graphe sous-jacent. Par conséquent, v augmentera de 1, chaque fois que la tf.function . sera appelée. Ce problème est courant chez les utilisateurs qui tentent de migrer leur code Tensorflow en mode Grpah vers Tensorflow 2 à l'aide de décorateurs tf.function , lorsque les effets secondaires de python (le counter dans l'exemple) sont utilisés pour déterminer les opérations à exécuter ( assign_add dans l'exemple ). Habituellement, les utilisateurs ne s'en rendent compte qu'après avoir vu des résultats numériques suspects ou des performances nettement inférieures à celles attendues (par exemple, si l'opération protégée est très coûteuse).

class Model(tf.Module):
  def __init__(self):
    self.v = tf.Variable(0)
    self.counter = 0

  @tf.function
  def __call__(self):
    if self.counter == 0:
      # A python side-effect
      self.counter += 1
      self.v.assign_add(1)

    return self.v

m = Model()
for n in range(3):
  print(m().numpy()) # prints 1, 2, 3
1
2
3

Une solution de contournement pour obtenir le comportement attendu consiste à utiliser tf.init_scope pour lever les opérations en dehors du graphe de fonctions. Cela garantit que l'incrément variable n'est effectué qu'une seule fois pendant le temps de traçage. Il convient de noter que init_scope a d'autres effets secondaires, notamment le flux de contrôle effacé et la bande de dégradé. Parfois, l'utilisation de init_scope peut devenir trop complexe pour être gérée de manière réaliste.

class Model(tf.Module):
  def __init__(self):
    self.v = tf.Variable(0)
    self.counter = 0

  @tf.function
  def __call__(self):
    if self.counter == 0:
      # Lifts ops out of function-building graphs
      with tf.init_scope():
        self.counter += 1
        self.v.assign_add(1)

    return self.v

m = Model()
for n in range(3):
  print(m().numpy()) # prints 1, 1, 1
1
1
1

En résumé, en règle générale, vous devez éviter de muter des objets python tels que des entiers ou des conteneurs tels que des listes qui vivent en dehors de Function . Utilisez plutôt des arguments et des objets TF. Par exemple, la section "Accumulation de valeurs dans une boucle" contient un exemple de la manière dont les opérations de type liste peuvent être implémentées.

Vous pouvez, dans certains cas, capturer et manipuler l'état s'il s'agit d'un tf.Variable . C'est ainsi que les poids des modèles Keras sont mis à jour avec des appels répétés à la même ConcreteFunction .

Utilisation des itérateurs et générateurs Python

De nombreuses fonctionnalités Python, telles que les générateurs et les itérateurs, s'appuient sur l'environnement d'exécution Python pour suivre l'état. En général, bien que ces constructions fonctionnent comme prévu en mode impatient, ce sont des exemples d'effets secondaires Python et ne se produisent donc que pendant le traçage.

@tf.function
def buggy_consume_next(iterator):
  tf.print("Value:", next(iterator))

iterator = iter([1, 2, 3])
buggy_consume_next(iterator)
# This reuses the first value from the iterator, rather than consuming the next value.
buggy_consume_next(iterator)
buggy_consume_next(iterator)
Value: 1
Value: 1
Value: 1

Tout comme la façon dont TensorFlow a un tf.TensorArray spécialisé pour les constructions de liste, il a un tf.data.Iterator spécialisé pour les constructions d'itération. Voir la section sur les transformations AutoGraph pour un aperçu. De plus, l'API tf.data peut aider à implémenter des modèles de générateur :

@tf.function
def good_consume_next(iterator):
  # This is ok, iterator is a tf.data.Iterator
  tf.print("Value:", next(iterator))

ds = tf.data.Dataset.from_tensor_slices([1, 2, 3])
iterator = iter(ds)
good_consume_next(iterator)
good_consume_next(iterator)
good_consume_next(iterator)
Value: 1
Value: 2
Value: 3

Toutes les sorties d'un tf.function doivent être des valeurs de retour

À l'exception de tf.Variable s, une tf.function doit renvoyer toutes ses sorties. Tenter d'accéder directement à n'importe quel tenseur à partir d'une fonction sans passer par les valeurs de retour provoque des "fuites".

Par exemple, la fonction ci-dessous "fuit" le tenseur a à travers le Python global x :

x = None

@tf.function
def leaky_function(a):
  global x
  x = a + 1  # Bad - leaks local tensor
  return a + 2

correct_a = leaky_function(tf.constant(1))

print(correct_a.numpy())  # Good - value obtained from function's returns
try:
  x.numpy()  # Bad - tensor leaked from inside the function, cannot be used here
except AttributeError as expected:
  print(expected)
3
'Tensor' object has no attribute 'numpy'

Cela est vrai même si la valeur divulguée est également renvoyée :

@tf.function
def leaky_function(a):
  global x
  x = a + 1  # Bad - leaks local tensor
  return x  # Good - uses local tensor

correct_a = leaky_function(tf.constant(1))

print(correct_a.numpy())  # Good - value obtained from function's returns
try:
  x.numpy()  # Bad - tensor leaked from inside the function, cannot be used here
except AttributeError as expected:
  print(expected)

@tf.function
def captures_leaked_tensor(b):
  b += x  # Bad - `x` is leaked from `leaky_function`
  return b

with assert_raises(TypeError):
  captures_leaked_tensor(tf.constant(2))
2
'Tensor' object has no attribute 'numpy'
Caught expected exception 
  <class 'TypeError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/566849597.py", line 21, in <module>
    captures_leaked_tensor(tf.constant(2))
TypeError: Originated from a graph execution error.

The graph execution error is detected at a node built at (most recent call last):
>>>  File /usr/lib/python3.7/runpy.py, line 193, in _run_module_as_main
>>>  File /usr/lib/python3.7/runpy.py, line 85, in _run_code
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py, line 16, in <module>
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/traitlets/config/application.py, line 846, in launch_instance
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelapp.py, line 677, in start
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tornado/platform/asyncio.py, line 199, in start
>>>  File /usr/lib/python3.7/asyncio/base_events.py, line 534, in run_forever
>>>  File /usr/lib/python3.7/asyncio/base_events.py, line 1771, in _run_once
>>>  File /usr/lib/python3.7/asyncio/events.py, line 88, in _run
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 457, in dispatch_queue
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 446, in process_one
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 353, in dispatch_shell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 648, in execute_request
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/ipkernel.py, line 353, in do_execute
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/zmqshell.py, line 533, in run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 2902, in run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 2947, in _run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/async_helpers.py, line 68, in _pseudo_sync_runner
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3173, in run_cell_async
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3364, in run_ast_nodes
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3444, in run_code
>>>  File /tmp/ipykernel_26244/566849597.py, line 7, in <module>
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 910, in __call__
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 958, in _call
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 781, in _initialize
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3157, in _get_concrete_function_internal_garbage_collected
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3557, in _maybe_define_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3402, in _create_graph_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 1143, in func_graph_from_py_func
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 672, in wrapped_fn
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 1125, in autograph_handler
>>>  File /tmp/ipykernel_26244/566849597.py, line 4, in leaky_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py, line 1383, in binary_op_wrapper
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py, line 1096, in op_dispatch_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py, line 1737, in _add_dispatch
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/gen_math_ops.py, line 476, in add_v2
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py, line 746, in _apply_op_helper
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 691, in _create_op_internal
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/ops.py, line 3705, in _create_op_internal
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/ops.py, line 2101, in __init__

Error detected in node 'add' defined at: File "/tmp/ipykernel_26244/566849597.py", line 4, in leaky_function

TypeError: tf.Graph captured an external symbolic tensor. The symbolic tensor 'add:0' created by node 'add' is captured by the tf.Graph being executed as an input. But a tf.Graph is not allowed to take symbolic tensors from another graph as its inputs. Make sure all captured inputs of the executing tf.Graph are not symbolic tensors. Use return values, explicit Python locals or TensorFlow collections to access it. Please see https://www.tensorflow.org/guide/function#all_outputs_of_a_tffunction_must_be_return_values for more information.

Généralement, de telles fuites se produisent lorsque vous utilisez des instructions Python ou des structures de données. En plus des fuites de tenseurs inaccessibles, de telles déclarations sont également probablement fausses car elles comptent comme des effets secondaires Python et ne sont pas garanties de s'exécuter à chaque appel de fonction.

Les moyens courants de divulguer des tenseurs locaux incluent également la mutation d'une collection Python externe ou d'un objet :

class MyClass:

  def __init__(self):
    self.field = None

external_list = []
external_object = MyClass()

def leaky_function():
  a = tf.constant(1)
  external_list.append(a)  # Bad - leaks tensor
  external_object.field = a  # Bad - leaks tensor

Les fonctions tf.functions récursives ne sont pas prises en charge

Les Function récursives ne sont pas prises en charge et peuvent provoquer des boucles infinies. Par example,

@tf.function
def recursive_fn(n):
  if n > 0:
    return recursive_fn(n - 1)
  else:
    return 1

with assert_raises(Exception):
  recursive_fn(tf.constant(5))  # Bad - maximum recursion error.
Caught expected exception 
  <class 'Exception'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/2233998312.py", line 9, in <module>
    recursive_fn(tf.constant(5))  # Bad - maximum recursion error.
tensorflow.python.autograph.impl.api.StagingError: in user code:

    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 3, in recursive_fn  *
        if n > 0:
    File "/usr/lib/python3.7/abc.py", line 139, in __instancecheck__
        return _abc_instancecheck(cls, instance)

    RecursionError: maximum recursion depth exceeded while calling a Python object

Même si une Function récursive semble fonctionner, la fonction python sera tracée plusieurs fois et pourrait avoir une implication sur les performances. Par example,

@tf.function
def recursive_fn(n):
  if n > 0:
    print('tracing')
    return recursive_fn(n - 1)
  else:
    return 1

recursive_fn(5)  # Warning - multiple tracings
tracing
tracing
tracing
tracing
tracing
<tf.Tensor: shape=(), dtype=int32, numpy=1>

Problèmes connus

Si votre Function ne s'évalue pas correctement, l'erreur peut être expliquée par ces problèmes connus qui devraient être corrigés à l'avenir.

En fonction des variables globales et libres de Python

Function crée une nouvelle ConcreteFunction lorsqu'elle est appelée avec une nouvelle valeur d'un argument Python. Cependant, il ne le fait pas pour la fermeture Python, les globals ou les nonlocals de cette Function . Si leur valeur change entre les appels à la Function , la Function utilisera toujours les valeurs qu'elle avait lorsqu'elle a été tracée. Ceci est différent du fonctionnement des fonctions Python classiques.

Pour cette raison, vous devez suivre un style de programmation fonctionnel qui utilise des arguments au lieu de fermer les noms externes.

@tf.function
def buggy_add():
  return 1 + foo

@tf.function
def recommended_add(foo):
  return 1 + foo

foo = 1
print("Buggy:", buggy_add())
print("Correct:", recommended_add(foo))
Buggy: tf.Tensor(2, shape=(), dtype=int32)
Correct: tf.Tensor(2, shape=(), dtype=int32)
print("Updating the value of `foo` to 100!")
foo = 100
print("Buggy:", buggy_add())  # Did not change!
print("Correct:", recommended_add(foo))
Updating the value of `foo` to 100!
Buggy: tf.Tensor(2, shape=(), dtype=int32)
Correct: tf.Tensor(101, shape=(), dtype=int32)

Une autre façon de mettre à jour une valeur globale consiste à en faire un tf.Variable et à utiliser la méthode Variable.assign la place.

@tf.function
def variable_add():
  return 1 + foo

foo = tf.Variable(1)
print("Variable:", variable_add())
Variable: tf.Tensor(2, shape=(), dtype=int32)
print("Updating the value of `foo` to 100!")
foo.assign(100)
print("Variable:", variable_add())
Updating the value of `foo` to 100!
Variable: tf.Tensor(101, shape=(), dtype=int32)

Dépend des objets Python

La recommandation de transmettre des objets Python en tant qu'arguments dans tf.function présente un certain nombre de problèmes connus, qui devraient être résolus à l'avenir. En général, vous pouvez compter sur un traçage cohérent si vous utilisez une primitive Python ou une structure compatible tf.nest comme argument ou si vous transmettez une instance différente d'un objet dans un Function . Cependant, Function ne créera pas de nouvelle trace lorsque vous passerez le même objet et modifierez uniquement ses attributs .

class SimpleModel(tf.Module):
  def __init__(self):
    # These values are *not* tf.Variables.
    self.bias = 0.
    self.weight = 2.

@tf.function
def evaluate(model, x):
  return model.weight * x + model.bias

simple_model = SimpleModel()
x = tf.constant(10.)
print(evaluate(simple_model, x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
simple_model.bias += 5.0
print(evaluate(simple_model, x))  # Didn't change :(
Adding bias!
tf.Tensor(20.0, shape=(), dtype=float32)

L'utilisation de la même Function pour évaluer l'instance mise à jour du modèle sera boguée car le modèle mis à jour a la même clé de cache que le modèle d'origine.

Pour cette raison, il est recommandé d'écrire votre Function pour éviter de dépendre d'attributs d'objet modifiables ou de créer de nouveaux objets.

Si ce n'est pas possible, une solution consiste à créer de nouvelles Function chaque fois que vous modifiez votre objet pour forcer le retraçage :

def evaluate(model, x):
  return model.weight * x + model.bias

new_model = SimpleModel()
evaluate_no_bias = tf.function(evaluate).get_concrete_function(new_model, x)
# Don't pass in `new_model`, `Function` already captured its state during tracing.
print(evaluate_no_bias(x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
new_model.bias += 5.0
# Create new Function and ConcreteFunction since you modified new_model.
evaluate_with_bias = tf.function(evaluate).get_concrete_function(new_model, x)
print(evaluate_with_bias(x)) # Don't pass in `new_model`.
Adding bias!
tf.Tensor(25.0, shape=(), dtype=float32)

Comme le retraçage peut être coûteux , vous pouvez utiliser tf.Variable s comme attributs d'objet, qui peuvent être mutés (mais pas modifiés, attention !) pour un effet similaire sans avoir besoin d'un retraçage.

class BetterModel:

  def __init__(self):
    self.bias = tf.Variable(0.)
    self.weight = tf.Variable(2.)

@tf.function
def evaluate(model, x):
  return model.weight * x + model.bias

better_model = BetterModel()
print(evaluate(better_model, x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
better_model.bias.assign_add(5.0)  # Note: instead of better_model.bias += 5
print(evaluate(better_model, x))  # This works!
Adding bias!
tf.Tensor(25.0, shape=(), dtype=float32)

Création de tf.Variables

Function ne prend en charge que le singleton tf.Variable s créé une fois lors du premier appel et réutilisé lors des appels de fonction suivants. L'extrait de code ci-dessous créerait un nouveau tf.Variable dans chaque appel de fonction, ce qui entraînerait une exception ValueError .

Exemple:

@tf.function
def f(x):
  v = tf.Variable(1.0)
  return v

with assert_raises(ValueError):
  f(1.0)
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3018268426.py", line 7, in <module>
    f(1.0)
ValueError: in user code:

    File "/tmp/ipykernel_26244/3018268426.py", line 3, in f  *
        v = tf.Variable(1.0)

    ValueError: tf.function only supports singleton tf.Variables created on the first call. Make sure the tf.Variable is only created once or created outside tf.function. See https://www.tensorflow.org/guide/function#creating_tfvariables for more information.

Un modèle courant utilisé pour contourner cette limitation consiste à commencer par une valeur Python None, puis à créer conditionnellement le tf.Variable si la valeur est None :

class Count(tf.Module):
  def __init__(self):
    self.count = None

  @tf.function
  def __call__(self):
    if self.count is None:
      self.count = tf.Variable(0)
    return self.count.assign_add(1)

c = Count()
print(c())
print(c())
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)

Utilisation avec plusieurs optimiseurs Keras

Vous pouvez rencontrer ValueError: tf.function only supports singleton tf.Variables created on the first call. lors de l'utilisation de plusieurs optimiseurs Keras avec un tf.function . Cette erreur se produit car les optimiseurs créent en interne tf.Variables lorsqu'ils appliquent des dégradés pour la première fois.

opt1 = tf.keras.optimizers.Adam(learning_rate = 1e-2)
opt2 = tf.keras.optimizers.Adam(learning_rate = 1e-3)

@tf.function
def train_step(w, x, y, optimizer):
   with tf.GradientTape() as tape:
       L = tf.reduce_sum(tf.square(w*x - y))
   gradients = tape.gradient(L, [w])
   optimizer.apply_gradients(zip(gradients, [w]))

w = tf.Variable(2.)
x = tf.constant([-1.])
y = tf.constant([2.])

train_step(w, x, y, opt1)
print("Calling `train_step` with different optimizer...")
with assert_raises(ValueError):
  train_step(w, x, y, opt2)
Calling `train_step` with different optimizer...
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3167358578.py", line 18, in <module>
    train_step(w, x, y, opt2)
ValueError: in user code:

    File "/tmp/ipykernel_26244/3167358578.py", line 9, in train_step  *
        optimizer.apply_gradients(zip(gradients, [w]))
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 639, in apply_gradients  **
        self._create_all_weights(var_list)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 828, in _create_all_weights
        _ = self.iterations
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 835, in __getattribute__
        return super(OptimizerV2, self).__getattribute__(name)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 995, in iterations
        aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 1202, in add_weight
        aggregation=aggregation)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer_utils.py", line 129, in make_variable
        shape=variable_shape if variable_shape else None)

    ValueError: tf.function only supports singleton tf.Variables created on the first call. Make sure the tf.Variable is only created once or created outside tf.function. See https://www.tensorflow.org/guide/function#creating_tfvariables for more information.

Si vous devez modifier l'optimiseur pendant la formation, une solution de contournement consiste à créer une nouvelle Function pour chaque optimiseur, en appelant directement la ConcreteFunction .

opt1 = tf.keras.optimizers.Adam(learning_rate = 1e-2)
opt2 = tf.keras.optimizers.Adam(learning_rate = 1e-3)

# Not a tf.function.
def train_step(w, x, y, optimizer):
   with tf.GradientTape() as tape:
       L = tf.reduce_sum(tf.square(w*x - y))
   gradients = tape.gradient(L, [w])
   optimizer.apply_gradients(zip(gradients, [w]))

w = tf.Variable(2.)
x = tf.constant([-1.])
y = tf.constant([2.])

# Make a new Function and ConcreteFunction for each optimizer.
train_step_1 = tf.function(train_step).get_concrete_function(w, x, y, opt1)
train_step_2 = tf.function(train_step).get_concrete_function(w, x, y, opt2)
for i in range(10):
  if i % 2 == 0:
    train_step_1(w, x, y) # `opt1` is not used as a parameter. 
  else:
    train_step_2(w, x, y) # `opt2` is not used as a parameter.

Utilisation avec plusieurs modèles Keras

Vous pouvez également rencontrer ValueError: tf.function only supports singleton tf.Variables created on the first call. lors du passage de différentes instances de modèle à la même Function .

Cette erreur se produit car les modèles Keras (dont la forme d'entrée n'est pas définie ) et les couches Keras créent des tf.Variables s lors de leur premier appel. Vous essayez peut-être d'initialiser ces variables dans une Function , qui a déjà été appelée. Pour éviter cette erreur, essayez d'appeler model.build(input_shape) pour initialiser tous les poids avant de former le modèle.

Lectures complémentaires

Pour savoir comment exporter et charger une Function , consultez le guide SavedModel . Pour en savoir plus sur les optimisations de graphe effectuées après le traçage, consultez le guide Grappler . Pour savoir comment optimiser votre pipeline de données et profiler votre modèle, consultez le guide Profiler .