Text-to-Video retrieval with S3D MIL-NCE

Stay organized with collections Save and categorize content based on your preferences.

View on TensorFlow.org Run in Google Colab View on GitHub Download notebook See TF Hub model
!pip install -q opencv-python

import os

import tensorflow.compat.v2 as tf
import tensorflow_hub as hub

import numpy as np
import cv2
from IPython import display
import math
2023-01-31 12:09:24.951284: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory
2023-01-31 12:09:24.951385: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory
2023-01-31 12:09:24.951396: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.

Import TF-Hub model

This tutorial demonstrates how to use the S3D MIL-NCE model from TensorFlow Hub to do text-to-video retrieval to find the most similar videos for a given text query.

The model has 2 signatures, one for generating video embeddings and one for generating text embeddings. We will use these embedding to find the nearest neighbors in the embedding space.

# Load the model once from TF-Hub.
hub_handle = 'https://tfhub.dev/deepmind/mil-nce/s3d/1'
hub_model = hub.load(hub_handle)

def generate_embeddings(model, input_frames, input_words):
  """Generate embeddings from the model from video frames and input words."""
  # Input_frames must be normalized in [0, 1] and of the shape Batch x T x H x W x 3
  vision_output = model.signatures['video'](tf.constant(tf.cast(input_frames, dtype=tf.float32)))
  text_output = model.signatures['text'](tf.constant(input_words))
  return vision_output['video_embedding'], text_output['text_embedding']
# @title Define video loading and visualization functions  { display-mode: "form" }

# Utilities to open video files using CV2
def crop_center_square(frame):
  y, x = frame.shape[0:2]
  min_dim = min(y, x)
  start_x = (x // 2) - (min_dim // 2)
  start_y = (y // 2) - (min_dim // 2)
  return frame[start_y:start_y+min_dim,start_x:start_x+min_dim]

def load_video(video_url, max_frames=32, resize=(224, 224)):
  path = tf.keras.utils.get_file(os.path.basename(video_url)[-128:], video_url)
  cap = cv2.VideoCapture(path)
  frames = []
    while True:
      ret, frame = cap.read()
      if not ret:
      frame = crop_center_square(frame)
      frame = cv2.resize(frame, resize)
      frame = frame[:, :, [2, 1, 0]]

      if len(frames) == max_frames:
  frames = np.array(frames)
  if len(frames) < max_frames:
    n_repeat = int(math.ceil(max_frames / float(len(frames))))
    frames = frames.repeat(n_repeat, axis=0)
  frames = frames[:max_frames]
  return frames / 255.0

def display_video(urls):
    html = '<table>'
    html += '<tr><th>Video 1</th><th>Video 2</th><th>Video 3</th></tr><tr>'
    for url in urls:
        html += '<td>'
        html += '<img src="{}" height="224">'.format(url)
        html += '</td>'
    html += '</tr></table>'
    return display.HTML(html)

def display_query_and_results_video(query, urls, scores):
  """Display a text query and the top result videos and scores."""
  sorted_ix = np.argsort(-scores)
  html = ''
  html += '<h2>Input query: <i>{}</i> </h2><div>'.format(query)
  html += 'Results: <div>'
  html += '<table>'
  html += '<tr><th>Rank #1, Score:{:.2f}</th>'.format(scores[sorted_ix[0]])
  html += '<th>Rank #2, Score:{:.2f}</th>'.format(scores[sorted_ix[1]])
  html += '<th>Rank #3, Score:{:.2f}</th></tr><tr>'.format(scores[sorted_ix[2]])
  for i, idx in enumerate(sorted_ix):
    url = urls[sorted_ix[i]];
    html += '<td>'
    html += '<img src="{}" height="224">'.format(url)
    html += '</td>'
  html += '</tr></table>'
  return html
# @title Load example videos and define text queries  { display-mode: "form" }

video_1_url = 'https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif' # @param {type:"string"}
video_2_url = 'https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif' # @param {type:"string"}
video_3_url = 'https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif' # @param {type:"string"}

video_1 = load_video(video_1_url)
video_2 = load_video(video_2_url)
video_3 = load_video(video_3_url)
all_videos = [video_1, video_2, video_3]

query_1_video = 'waterfall' # @param {type:"string"}
query_2_video = 'playing guitar' # @param {type:"string"}
query_3_video = 'car drifting' # @param {type:"string"}
all_queries_video = [query_1_video, query_2_video, query_3_video]
all_videos_urls = [video_1_url, video_2_url, video_3_url]
Downloading data from https://upload.wikimedia.org/wikipedia/commons/b/b0/YosriAirTerjun.gif
1207385/1207385 [==============================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/e/e6/Guitar_solo_gif.gif
1021622/1021622 [==============================] - 0s 0us/step
Downloading data from https://upload.wikimedia.org/wikipedia/commons/3/30/2009-08-16-autodrift-by-RalfR-gif-by-wau.gif
1506603/1506603 [==============================] - 0s 0us/step

Demonstrate text to video retrieval

# Prepare video inputs.
videos_np = np.stack(all_videos, axis=0)

# Prepare text input.
words_np = np.array(all_queries_video)

# Generate the video and text embeddings.
video_embd, text_embd = generate_embeddings(hub_model, videos_np, words_np)

# Scores between video and text is computed by dot products.
all_scores = np.dot(text_embd, tf.transpose(video_embd))
# Display results.
html = ''
for i, words in enumerate(words_np):
  html += display_query_and_results_video(words, all_videos_urls, all_scores[i, :])
  html += '<br>'