إعادة تدريب مصنف الصور

عرض على TensorFlow.org تشغيل في Google Colab عرض على جيثب تحميل دفتر انظر نماذج TF Hub

مقدمة

نماذج تصنيف الصور لديها ملايين من المعلمات. يتطلب تدريبهم من نقطة الصفر الكثير من بيانات التدريب المسمى والكثير من قوة الحوسبة. التعلم عن طريق النقل هو أسلوب يختصر الكثير من هذا عن طريق أخذ قطعة من نموذج تم تدريبه بالفعل على مهمة ذات صلة وإعادة استخدامه في نموذج جديد.

يوضح هذا Colab كيفية بناء نموذج Keras لتصنيف خمسة أنواع من الزهور باستخدام نموذج TF2 SavedModel مُدرب مسبقًا من TensorFlow Hub لاستخراج ميزة الصورة ، تم تدريبه على مجموعة بيانات ImageNet الأكبر والأكثر عمومية. اختياريًا ، يمكن تدريب مستخرج الميزات ("ضبطه بدقة") جنبًا إلى جنب مع المصنف المضاف حديثًا.

هل تبحث عن أداة بدلاً من ذلك؟

هذا برنامج تعليمي عن ترميز TensorFlow. إذا كنت ترغب في الأداة التي يبني مجرد نموذج TensorFlow أو TFLite ل، نلقي نظرة على make_image_classifier أداة سطر الأوامر التي يحصل المثبتة من خلال حزمة PIP tensorflow-hub[make_image_classifier] ، أو في هذا colab TFLite.

يثبت

import itertools
import os

import matplotlib.pylab as plt
import numpy as np

import tensorflow as tf
import tensorflow_hub as hub

print("TF version:", tf.__version__)
print("Hub version:", hub.__version__)
print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE")
TF version: 2.7.0
Hub version: 0.12.0
GPU is available

حدد وحدة TF2 SavedModel المراد استخدامها

بالنسبة للمبتدئين، استخدم https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4 . يمكن استخدام نفس عنوان URL في التعليمات البرمجية لتعريف SavedModel وفي المستعرض الخاص بك لإظهار الوثائق الخاصة به. (لاحظ أن النماذج بتنسيق TF1 Hub لن تعمل هنا.)

يمكنك العثور على مزيد من نماذج TF2 التي تولد صورة النواقل الميزة هنا .

هناك العديد من النماذج الممكنة لمحاولة. كل ما عليك فعله هو تحديد خلية مختلفة في الخلية أدناه ومتابعة دفتر الملاحظات.

model_name = "efficientnetv2-xl-21k" # @param ['efficientnetv2-s', 'efficientnetv2-m', 'efficientnetv2-l', 'efficientnetv2-s-21k', 'efficientnetv2-m-21k', 'efficientnetv2-l-21k', 'efficientnetv2-xl-21k', 'efficientnetv2-b0-21k', 'efficientnetv2-b1-21k', 'efficientnetv2-b2-21k', 'efficientnetv2-b3-21k', 'efficientnetv2-s-21k-ft1k', 'efficientnetv2-m-21k-ft1k', 'efficientnetv2-l-21k-ft1k', 'efficientnetv2-xl-21k-ft1k', 'efficientnetv2-b0-21k-ft1k', 'efficientnetv2-b1-21k-ft1k', 'efficientnetv2-b2-21k-ft1k', 'efficientnetv2-b3-21k-ft1k', 'efficientnetv2-b0', 'efficientnetv2-b1', 'efficientnetv2-b2', 'efficientnetv2-b3', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'bit_s-r50x1', 'inception_v3', 'inception_resnet_v2', 'resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152', 'resnet_v2_50', 'resnet_v2_101', 'resnet_v2_152', 'nasnet_large', 'nasnet_mobile', 'pnasnet_large', 'mobilenet_v2_100_224', 'mobilenet_v2_130_224', 'mobilenet_v2_140_224', 'mobilenet_v3_small_100_224', 'mobilenet_v3_small_075_224', 'mobilenet_v3_large_100_224', 'mobilenet_v3_large_075_224']

model_handle_map = {
  "efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/feature_vector/2",
  "efficientnetv2-m": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_m/feature_vector/2",
  "efficientnetv2-l": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/feature_vector/2",
  "efficientnetv2-s-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_s/feature_vector/2",
  "efficientnetv2-m-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_m/feature_vector/2",
  "efficientnetv2-l-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_l/feature_vector/2",
  "efficientnetv2-xl-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2",
  "efficientnetv2-b0-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b0/feature_vector/2",
  "efficientnetv2-b1-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b1/feature_vector/2",
  "efficientnetv2-b2-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b2/feature_vector/2",
  "efficientnetv2-b3-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b3/feature_vector/2",
  "efficientnetv2-s-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/feature_vector/2",
  "efficientnetv2-m-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/feature_vector/2",
  "efficientnetv2-l-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/feature_vector/2",
  "efficientnetv2-xl-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/feature_vector/2",
  "efficientnetv2-b0-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b0/feature_vector/2",
  "efficientnetv2-b1-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b1/feature_vector/2",
  "efficientnetv2-b2-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b2/feature_vector/2",
  "efficientnetv2-b3-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b3/feature_vector/2",
  "efficientnetv2-b0": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/feature_vector/2",
  "efficientnetv2-b1": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b1/feature_vector/2",
  "efficientnetv2-b2": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b2/feature_vector/2",
  "efficientnetv2-b3": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b3/feature_vector/2",
  "efficientnet_b0": "https://tfhub.dev/tensorflow/efficientnet/b0/feature-vector/1",
  "efficientnet_b1": "https://tfhub.dev/tensorflow/efficientnet/b1/feature-vector/1",
  "efficientnet_b2": "https://tfhub.dev/tensorflow/efficientnet/b2/feature-vector/1",
  "efficientnet_b3": "https://tfhub.dev/tensorflow/efficientnet/b3/feature-vector/1",
  "efficientnet_b4": "https://tfhub.dev/tensorflow/efficientnet/b4/feature-vector/1",
  "efficientnet_b5": "https://tfhub.dev/tensorflow/efficientnet/b5/feature-vector/1",
  "efficientnet_b6": "https://tfhub.dev/tensorflow/efficientnet/b6/feature-vector/1",
  "efficientnet_b7": "https://tfhub.dev/tensorflow/efficientnet/b7/feature-vector/1",
  "bit_s-r50x1": "https://tfhub.dev/google/bit/s-r50x1/1",
  "inception_v3": "https://tfhub.dev/google/imagenet/inception_v3/feature-vector/4",
  "inception_resnet_v2": "https://tfhub.dev/google/imagenet/inception_resnet_v2/feature-vector/4",
  "resnet_v1_50": "https://tfhub.dev/google/imagenet/resnet_v1_50/feature-vector/4",
  "resnet_v1_101": "https://tfhub.dev/google/imagenet/resnet_v1_101/feature-vector/4",
  "resnet_v1_152": "https://tfhub.dev/google/imagenet/resnet_v1_152/feature-vector/4",
  "resnet_v2_50": "https://tfhub.dev/google/imagenet/resnet_v2_50/feature-vector/4",
  "resnet_v2_101": "https://tfhub.dev/google/imagenet/resnet_v2_101/feature-vector/4",
  "resnet_v2_152": "https://tfhub.dev/google/imagenet/resnet_v2_152/feature-vector/4",
  "nasnet_large": "https://tfhub.dev/google/imagenet/nasnet_large/feature_vector/4",
  "nasnet_mobile": "https://tfhub.dev/google/imagenet/nasnet_mobile/feature_vector/4",
  "pnasnet_large": "https://tfhub.dev/google/imagenet/pnasnet_large/feature_vector/4",
  "mobilenet_v2_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4",
  "mobilenet_v2_130_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/feature_vector/4",
  "mobilenet_v2_140_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/feature_vector/4",
  "mobilenet_v3_small_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_100_224/feature_vector/5",
  "mobilenet_v3_small_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_075_224/feature_vector/5",
  "mobilenet_v3_large_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/feature_vector/5",
  "mobilenet_v3_large_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/feature_vector/5",
}

model_image_size_map = {
  "efficientnetv2-s": 384,
  "efficientnetv2-m": 480,
  "efficientnetv2-l": 480,
  "efficientnetv2-b0": 224,
  "efficientnetv2-b1": 240,
  "efficientnetv2-b2": 260,
  "efficientnetv2-b3": 300,
  "efficientnetv2-s-21k": 384,
  "efficientnetv2-m-21k": 480,
  "efficientnetv2-l-21k": 480,
  "efficientnetv2-xl-21k": 512,
  "efficientnetv2-b0-21k": 224,
  "efficientnetv2-b1-21k": 240,
  "efficientnetv2-b2-21k": 260,
  "efficientnetv2-b3-21k": 300,
  "efficientnetv2-s-21k-ft1k": 384,
  "efficientnetv2-m-21k-ft1k": 480,
  "efficientnetv2-l-21k-ft1k": 480,
  "efficientnetv2-xl-21k-ft1k": 512,
  "efficientnetv2-b0-21k-ft1k": 224,
  "efficientnetv2-b1-21k-ft1k": 240,
  "efficientnetv2-b2-21k-ft1k": 260,
  "efficientnetv2-b3-21k-ft1k": 300, 
  "efficientnet_b0": 224,
  "efficientnet_b1": 240,
  "efficientnet_b2": 260,
  "efficientnet_b3": 300,
  "efficientnet_b4": 380,
  "efficientnet_b5": 456,
  "efficientnet_b6": 528,
  "efficientnet_b7": 600,
  "inception_v3": 299,
  "inception_resnet_v2": 299,
  "nasnet_large": 331,
  "pnasnet_large": 331,
}

model_handle = model_handle_map.get(model_name)
pixels = model_image_size_map.get(model_name, 224)

print(f"Selected model: {model_name} : {model_handle}")

IMAGE_SIZE = (pixels, pixels)
print(f"Input size {IMAGE_SIZE}")

BATCH_SIZE = 16
Selected model: efficientnetv2-xl-21k : https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2
Input size (512, 512)

قم بإعداد مجموعة بيانات الزهور

يتم تغيير حجم المدخلات بشكل مناسب للوحدة المحددة. تعمل زيادة مجموعة البيانات (أي التشوهات العشوائية للصورة في كل مرة تتم قراءتها) على تحسين التدريب ، وخاصةً. عند صقل.

data_dir = tf.keras.utils.get_file(
    'flower_photos',
    'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
    untar=True)
Downloading data from https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
228818944/228813984 [==============================] - 1s 0us/step
228827136/228813984 [==============================] - 1s 0us/step

Found 3670 files belonging to 5 classes.
Using 2936 files for training.
Found 3670 files belonging to 5 classes.
Using 734 files for validation.

تحديد النموذج

كل ما يتطلبه الأمر هو لوضع المصنف الخطي على رأس feature_extractor_layer مع وحدة محور.

للسرعة، ونحن نبدأ بها مع غير قابلة للتدريب feature_extractor_layer ، ولكن يمكنك أيضا تمكين صقل لمزيد من الدقة.

do_fine_tuning = False
print("Building model with", model_handle)
model = tf.keras.Sequential([
    # Explicitly define the input shape so the model can be properly
    # loaded by the TFLiteConverter
    tf.keras.layers.InputLayer(input_shape=IMAGE_SIZE + (3,)),
    hub.KerasLayer(model_handle, trainable=do_fine_tuning),
    tf.keras.layers.Dropout(rate=0.2),
    tf.keras.layers.Dense(len(class_names),
                          kernel_regularizer=tf.keras.regularizers.l2(0.0001))
])
model.build((None,)+IMAGE_SIZE+(3,))
model.summary()
Building model with https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2
Model: "sequential_1"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 keras_layer (KerasLayer)    (None, 1280)              207615832 
                                                                 
 dropout (Dropout)           (None, 1280)              0         
                                                                 
 dense (Dense)               (None, 5)                 6405      
                                                                 
=================================================================
Total params: 207,622,237
Trainable params: 6,405
Non-trainable params: 207,615,832
_________________________________________________________________

تدريب النموذج

model.compile(
  optimizer=tf.keras.optimizers.SGD(learning_rate=0.005, momentum=0.9), 
  loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True, label_smoothing=0.1),
  metrics=['accuracy'])
steps_per_epoch = train_size // BATCH_SIZE
validation_steps = valid_size // BATCH_SIZE
hist = model.fit(
    train_ds,
    epochs=5, steps_per_epoch=steps_per_epoch,
    validation_data=val_ds,
    validation_steps=validation_steps).history
Epoch 1/5
183/183 [==============================] - 133s 543ms/step - loss: 0.9221 - accuracy: 0.8996 - val_loss: 0.6271 - val_accuracy: 0.9597
Epoch 2/5
183/183 [==============================] - 94s 514ms/step - loss: 0.6072 - accuracy: 0.9521 - val_loss: 0.5990 - val_accuracy: 0.9528
Epoch 3/5
183/183 [==============================] - 94s 513ms/step - loss: 0.5590 - accuracy: 0.9671 - val_loss: 0.5362 - val_accuracy: 0.9722
Epoch 4/5
183/183 [==============================] - 94s 514ms/step - loss: 0.5532 - accuracy: 0.9726 - val_loss: 0.5780 - val_accuracy: 0.9639
Epoch 5/5
183/183 [==============================] - 94s 513ms/step - loss: 0.5618 - accuracy: 0.9699 - val_loss: 0.5468 - val_accuracy: 0.9556
plt.figure()
plt.ylabel("Loss (training and validation)")
plt.xlabel("Training Steps")
plt.ylim([0,2])
plt.plot(hist["loss"])
plt.plot(hist["val_loss"])

plt.figure()
plt.ylabel("Accuracy (training and validation)")
plt.xlabel("Training Steps")
plt.ylim([0,1])
plt.plot(hist["accuracy"])
plt.plot(hist["val_accuracy"])
[<matplotlib.lines.Line2D at 0x7f607ad6ad90>]

بي إن جي

بي إن جي

جرب النموذج الموجود على صورة من بيانات التحقق من الصحة:

x, y = next(iter(val_ds))
image = x[0, :, :, :]
true_index = np.argmax(y[0])
plt.imshow(image)
plt.axis('off')
plt.show()

# Expand the validation image to (1, 224, 224, 3) before predicting the label
prediction_scores = model.predict(np.expand_dims(image, axis=0))
predicted_index = np.argmax(prediction_scores)
print("True label: " + class_names[true_index])
print("Predicted label: " + class_names[predicted_index])

بي إن جي

True label: sunflowers
Predicted label: sunflowers

أخيرًا ، يمكن حفظ النموذج المدرب للنشر في خدمة TF أو TFLite (على الهاتف المحمول) على النحو التالي.

saved_model_path = f"/tmp/saved_flowers_model_{model_name}"
tf.saved_model.save(model, saved_model_path)
2021-11-05 13:09:44.225508: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:absl:Found untraced functions such as restored_function_body, restored_function_body, restored_function_body, restored_function_body, restored_function_body while saving (showing 5 of 3985). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/saved_flowers_model_efficientnetv2-xl-21k/assets
INFO:tensorflow:Assets written to: /tmp/saved_flowers_model_efficientnetv2-xl-21k/assets

اختياري: النشر على TensorFlow Lite

TensorFlow لايت يتيح لك نشر نماذج TensorFlow إلى الأجهزة النقالة وتقنيات عمليات. رمز أدناه يبين كيفية تحويل نموذج تدريبهم على TFLite وتطبيق أدوات ما بعد التدريب من TensorFlow نموذج الأمثل أدوات . أخيرًا ، يتم تشغيله في مترجم TFLite لفحص الجودة الناتجة

  • يوفر التحويل بدون تحسين نفس النتائج كما كان من قبل (حتى خطأ التقريب).
  • التحويل مع التحسين بدون أي بيانات يكمم أوزان النموذج إلى 8 بتات ، لكن الاستدلال لا يزال يستخدم حساب النقطة العائمة لتنشيطات الشبكة العصبية. يؤدي ذلك إلى تقليل حجم النموذج بمعدل 4 مرات تقريبًا وتحسين زمن انتقال وحدة المعالجة المركزية على الأجهزة المحمولة.
  • علاوة على ذلك ، يمكن قياس حساب عمليات تنشيط الشبكة العصبية إلى أعداد صحيحة 8 بت أيضًا إذا تم توفير مجموعة بيانات مرجعية صغيرة لمعايرة نطاق التكميم. على جهاز محمول ، يعمل هذا على تسريع الاستدلال بشكل أكبر ويجعل من الممكن العمل على مسرعات مثل Edge TPU.

إعدادات التحسين

2021-11-05 13:10:59.372672: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:363] Ignored output_format.
2021-11-05 13:10:59.372728: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:366] Ignored drop_control_dependency.
2021-11-05 13:10:59.372736: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:372] Ignored change_concat_input_ranges.
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded
Wrote TFLite model of 826236388 bytes.
interpreter = tf.lite.Interpreter(model_content=lite_model_content)
# This little helper wraps the TFLite Interpreter as a numpy-to-numpy function.
def lite_model(images):
  interpreter.allocate_tensors()
  interpreter.set_tensor(interpreter.get_input_details()[0]['index'], images)
  interpreter.invoke()
  return interpreter.get_tensor(interpreter.get_output_details()[0]['index'])
num_eval_examples = 50 
eval_dataset = ((image, label)  # TFLite expects batch size 1.
                for batch in train_ds
                for (image, label) in zip(*batch))
count = 0
count_lite_tf_agree = 0
count_lite_correct = 0
for image, label in eval_dataset:
  probs_lite = lite_model(image[None, ...])[0]
  probs_tf = model(image[None, ...]).numpy()[0]
  y_lite = np.argmax(probs_lite)
  y_tf = np.argmax(probs_tf)
  y_true = np.argmax(label)
  count +=1
  if y_lite == y_tf: count_lite_tf_agree += 1
  if y_lite == y_true: count_lite_correct += 1
  if count >= num_eval_examples: break
print("TFLite model agrees with original model on %d of %d examples (%g%%)." %
      (count_lite_tf_agree, count, 100.0 * count_lite_tf_agree / count))
print("TFLite model is accurate on %d of %d examples (%g%%)." %
      (count_lite_correct, count, 100.0 * count_lite_correct / count))
TFLite model agrees with original model on 50 of 50 examples (100%).
TFLite model is accurate on 50 of 50 examples (100%).