このページは Cloud Translation API によって翻訳されました。
Switch to English

BigQuery TensorFlowリーダーのエンドツーエンドの例

TensorFlow.orgで見る Google Colabで実行 GitHubでソースを表示する ノートブックをダウンロード

概観

このチュートリアルでは、 BigQuery TensorFlowリーダーを使用して、KerasシーケンシャルAPIを使用したニューラルネットワークをトレーニングする方法を示します。

データセット

このチュートリアルでは、 UC Irvine Machine Learning Repositoryが提供する米国国勢調査所得データセットを使用します 。このデータセットには、1994年の国勢調査データベースの人々に関する情報が含まれています。これには、年齢、教育、配偶者の有無、職業、年間5万ドル以上の収入があるかどうかなどが含まれます。

セットアップ

GCPプロジェクトを設定する

ノートブック環境に関係なく、次の手順が必要です。

  1. GCPプロジェクトを選択または作成します。
  2. プロジェクトで課金が有効になっていることを確認してください。
  3. BigQuery Storage APIを有効にする
  4. 下のセルにプロジェクトIDを入力してください。次に、セルを実行して、Cloud SDKがこのノートブックのすべてのコマンドに適切なプロジェクトを使用していることを確認します。

必要なパッケージをインストールし、ランタイムを再起動します

 try:
  # Use the Colab's preinstalled TensorFlow 2.x
  %tensorflow_version 2.x 
except:
  pass
 
pip install fastavro
pip install tensorflow-io==0.9.0
pip install google-cloud-bigquery-storage

認証する

 from google.colab import auth
auth.authenticate_user()
print('Authenticated')
 

プロジェクトIDを設定する

 PROJECT_ID = "<YOUR PROJECT>" 
! gcloud config set project $PROJECT_ID
%env GCLOUD_PROJECT=$PROJECT_ID
 

Pythonライブラリをインポートし、定数を定義する

 from __future__ import absolute_import, division, print_function, unicode_literals

import os
from six.moves import urllib
import tempfile

import numpy as np
import pandas as pd
import tensorflow as tf

from google.cloud import bigquery
from google.api_core.exceptions import GoogleAPIError

LOCATION = 'us'

# Storage directory
DATA_DIR = os.path.join(tempfile.gettempdir(), 'census_data')

# Download options.
DATA_URL = 'https://storage.googleapis.com/cloud-samples-data/ml-engine/census/data'
TRAINING_FILE = 'adult.data.csv'
EVAL_FILE = 'adult.test.csv'
TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE)
EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE)

DATASET_ID = 'census_dataset'
TRAINING_TABLE_ID = 'census_training_table'
EVAL_TABLE_ID = 'census_eval_table'

CSV_SCHEMA = [
      bigquery.SchemaField("age", "FLOAT64"),
      bigquery.SchemaField("workclass", "STRING"),
      bigquery.SchemaField("fnlwgt", "FLOAT64"),
      bigquery.SchemaField("education", "STRING"),
      bigquery.SchemaField("education_num", "FLOAT64"),
      bigquery.SchemaField("marital_status", "STRING"),
      bigquery.SchemaField("occupation", "STRING"),
      bigquery.SchemaField("relationship", "STRING"),
      bigquery.SchemaField("race", "STRING"),
      bigquery.SchemaField("gender", "STRING"),
      bigquery.SchemaField("capital_gain", "FLOAT64"),
      bigquery.SchemaField("capital_loss", "FLOAT64"),
      bigquery.SchemaField("hours_per_week", "FLOAT64"),
      bigquery.SchemaField("native_country", "STRING"),
      bigquery.SchemaField("income_bracket", "STRING"),
  ]

UNUSED_COLUMNS = ["fnlwgt", "education_num"]
 

国勢調査データをBigQueryにインポートする

BigQueryにデータを読み込むヘルパーメソッドを定義する

 def create_bigquery_dataset_if_necessary(dataset_id):
  # Construct a full Dataset object to send to the API.
  client = bigquery.Client(project=PROJECT_ID)
  dataset = bigquery.Dataset(bigquery.dataset.DatasetReference(PROJECT_ID, dataset_id))
  dataset.location = LOCATION

  try:
    dataset = client.create_dataset(dataset)  # API request
    return True
  except GoogleAPIError as err:
    if err.code != 409: # http_client.CONFLICT
      raise
  return False

 
 def load_data_into_bigquery(url, table_id):
  create_bigquery_dataset_if_necessary(DATASET_ID)
  client = bigquery.Client(project=PROJECT_ID)
  dataset_ref = client.dataset(DATASET_ID)
  table_ref = dataset_ref.table(table_id)
  job_config = bigquery.LoadJobConfig()
  job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE
  job_config.source_format = bigquery.SourceFormat.CSV
  job_config.schema = CSV_SCHEMA

  load_job = client.load_table_from_uri(
      url, table_ref, job_config=job_config
  )
  print("Starting job {}".format(load_job.job_id))

  load_job.result()  # Waits for table load to complete.
  print("Job finished.")

  destination_table = client.get_table(table_ref)
  print("Loaded {} rows.".format(destination_table.num_rows))
 

BigQueryに国勢調査データを読み込みます。

 load_data_into_bigquery(TRAINING_URL, TRAINING_TABLE_ID)
load_data_into_bigquery(EVAL_URL, EVAL_TABLE_ID)
 
Starting job 2ceffef8-e6e4-44bb-9e86-3d97b0501187
Job finished.
Loaded 32561 rows.
Starting job bf66f1b3-2506-408b-9009-c19f4ae9f58a
Job finished.
Loaded 16278 rows.

データがインポートされたことを確認する

TODO:<YOUR PROJECT>を自分のPROJECT_IDに置き換えます

 %%bigquery --use_bqstorage_api
SELECT * FROM `<YOUR PROJECT>.census_dataset.census_training_table` LIMIT 5
 

BigQueryリーダーを使用してTensorFlow DataSetに国勢調査データを読み込む

cesnusデータを読み取り、BigQueryからTensorFlow DataSetに変換する

 from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
from tensorflow_io.bigquery import BigQueryClient
from tensorflow_io.bigquery import BigQueryReadSession
  
def transofrom_row(row_dict):
  # Trim all string tensors
  trimmed_dict = { column:
                  (tf.strings.strip(tensor) if tensor.dtype == 'string' else tensor) 
                  for (column,tensor) in row_dict.items()
                  }
  # Extract feature column
  income_bracket = trimmed_dict.pop('income_bracket')
  # Convert feature column to 0.0/1.0
  income_bracket_float = tf.cond(tf.equal(tf.strings.strip(income_bracket), '>50K'), 
                 lambda: tf.constant(1.0), 
                 lambda: tf.constant(0.0))
  return (trimmed_dict, income_bracket_float)

def read_bigquery(table_name):
  tensorflow_io_bigquery_client = BigQueryClient()
  read_session = tensorflow_io_bigquery_client.read_session(
      "projects/" + PROJECT_ID,
      PROJECT_ID, table_name, DATASET_ID,
      list(field.name for field in CSV_SCHEMA 
           if not field.name in UNUSED_COLUMNS),
      list(dtypes.double if field.field_type == 'FLOAT64' 
           else dtypes.string for field in CSV_SCHEMA
           if not field.name in UNUSED_COLUMNS),
      requested_streams=2)
  
  dataset = read_session.parallel_read_rows()
  transformed_ds = dataset.map (transofrom_row)
  return transformed_ds

 
 BATCH_SIZE = 32

training_ds = read_bigquery(TRAINING_TABLE_ID).shuffle(10000).batch(BATCH_SIZE)
eval_ds = read_bigquery(EVAL_TABLE_ID).batch(BATCH_SIZE)
 

特徴列を定義する

 def get_categorical_feature_values(column):
  query = 'SELECT DISTINCT TRIM({}) FROM `{}`.{}.{}'.format(column, PROJECT_ID, DATASET_ID, TRAINING_TABLE_ID)
  client = bigquery.Client(project=PROJECT_ID)
  dataset_ref = client.dataset(DATASET_ID)
  job_config = bigquery.QueryJobConfig()
  query_job = client.query(query, job_config=job_config)
  result = query_job.to_dataframe()
  return result.values[:,0]
 
 from tensorflow import feature_column

feature_columns = []

# numeric cols
for header in ['capital_gain', 'capital_loss', 'hours_per_week']:
  feature_columns.append(feature_column.numeric_column(header))

# categorical cols
for header in ['workclass', 'marital_status', 'occupation', 'relationship',
               'race', 'native_country', 'education']:
  categorical_feature = feature_column.categorical_column_with_vocabulary_list(
        header, get_categorical_feature_values(header))
  categorical_feature_one_hot = feature_column.indicator_column(categorical_feature)
  feature_columns.append(categorical_feature_one_hot)

# bucketized cols
age = feature_column.numeric_column('age')
age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
feature_columns.append(age_buckets)

feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
 

モデルの構築とトレーニング

モデルを構築する

 Dense = tf.keras.layers.Dense
model = tf.keras.Sequential(
  [
    feature_layer,
      Dense(100, activation=tf.nn.relu, kernel_initializer='uniform'),
      Dense(75, activation=tf.nn.relu),
      Dense(50, activation=tf.nn.relu),
      Dense(25, activation=tf.nn.relu),
      Dense(1, activation=tf.nn.sigmoid)
  ])

# Compile Keras model
model.compile(
    loss='binary_crossentropy', 
    metrics=['accuracy'])
 

モデルのトレーニング

 model.fit(training_ds, epochs=5)
 
WARNING:tensorflow:Layer sequential is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2.  The layer has dtype float32 because it's dtype defaults to floatx.

If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.

To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.

Warning:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4276: IndicatorColumn._variable_shape (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version.
Instructions for updating:
The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4331: VocabularyListCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version.
Instructions for updating:
The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.
Epoch 1/5
1018/1018 [==============================] - 17s 17ms/step - loss: 0.5985 - accuracy: 0.8105
Epoch 2/5
1018/1018 [==============================] - 10s 10ms/step - loss: 0.3670 - accuracy: 0.8324
Epoch 3/5
1018/1018 [==============================] - 11s 10ms/step - loss: 0.3487 - accuracy: 0.8393
Epoch 4/5
1018/1018 [==============================] - 11s 10ms/step - loss: 0.3398 - accuracy: 0.8435
Epoch 5/5
1018/1018 [==============================] - 11s 11ms/step - loss: 0.3377 - accuracy: 0.8455

<tensorflow.python.keras.callbacks.History at 0x7f978f5b91d0>

モデルを評価する

モデルを評価する

 loss, accuracy = model.evaluate(eval_ds)
print("Accuracy", accuracy)
 
509/509 [==============================] - 8s 15ms/step - loss: 0.3338 - accuracy: 0.8398
Accuracy 0.8398452

いくつかのランダムサンプルを評価する

 sample_x = {
    'age' : np.array([56, 36]), 
    'workclass': np.array(['Local-gov', 'Private']), 
    'education': np.array(['Bachelors', 'Bachelors']), 
    'marital_status': np.array(['Married-civ-spouse', 'Married-civ-spouse']), 
    'occupation': np.array(['Tech-support', 'Other-service']), 
    'relationship': np.array(['Husband', 'Husband']), 
    'race': np.array(['White', 'Black']), 
    'gender': np.array(['Male', 'Male']), 
    'capital_gain': np.array([0, 7298]), 
    'capital_loss': np.array([0, 0]), 
    'hours_per_week': np.array([40, 36]), 
    'native_country': np.array(['United-States', 'United-States'])
  }

model.predict(sample_x)
 
array([[0.5541261],
       [0.6209938]], dtype=float32)

資源