Cette page a été traduite par l'API Cloud Translation.
Switch to English

Modèles TF Lattice Premade

Voir sur TensorFlow.org Exécuter dans Google Colab Afficher la source sur GitHub Télécharger le carnet

Aperçu

Les modèles prédéfinis sont des moyens rapides et faciles de créer des instances TFL tf.keras.model pour des cas d'utilisation typiques. Ce guide décrit les étapes nécessaires pour construire un modèle TFL Premade et le former / le tester.

Installer

Installation du package TF Lattice:

pip install -q tensorflow-lattice pydot

Importation des packages requis:

import tensorflow as tf

import copy
import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
logging.disable(sys.maxsize)

Téléchargement du jeu de données UCI Statlog (Heart):

csv_file = tf.keras.utils.get_file(
    'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
df = pd.read_csv(csv_file)
train_size = int(len(df) * 0.8)
train_dataframe = df[:train_size]
test_dataframe = df[train_size:]
df.head()

Extraire et convertir des entités et des étiquettes en tenseurs:

# Features:
# - age
# - sex
# - cp        chest pain type (4 values)
# - trestbps  resting blood pressure
# - chol      serum cholestoral in mg/dl
# - fbs       fasting blood sugar > 120 mg/dl
# - restecg   resting electrocardiographic results (values 0,1,2)
# - thalach   maximum heart rate achieved
# - exang     exercise induced angina
# - oldpeak   ST depression induced by exercise relative to rest
# - slope     the slope of the peak exercise ST segment
# - ca        number of major vessels (0-3) colored by flourosopy
# - thal      3 = normal; 6 = fixed defect; 7 = reversable defect
#
# This ordering of feature names will be the exact same order that we construct
# our model to expect.
feature_names = [
    'age', 'sex', 'cp', 'chol', 'fbs', 'trestbps', 'thalach', 'restecg',
    'exang', 'oldpeak', 'slope', 'ca', 'thal'
]
feature_name_indices = {name: index for index, name in enumerate(feature_names)}
# This is the vocab list and mapping we will use for the 'thal' categorical
# feature.
thal_vocab_list = ['normal', 'fixed', 'reversible']
thal_map = {category: i for i, category in enumerate(thal_vocab_list)}
# Custom function for converting thal categories to buckets
def convert_thal_features(thal_features):
  # Note that two examples in the test set are already converted.
  return np.array([
      thal_map[feature] if feature in thal_vocab_list else feature
      for feature in thal_features
  ])


# Custom function for extracting each feature.
def extract_features(dataframe,
                     label_name='target',
                     feature_names=feature_names):
  features = []
  for feature_name in feature_names:
    if feature_name == 'thal':
      features.append(
          convert_thal_features(dataframe[feature_name].values).astype(float))
    else:
      features.append(dataframe[feature_name].values.astype(float))
  labels = dataframe[label_name].values.astype(float)
  return features, labels
train_xs, train_ys = extract_features(train_dataframe)
test_xs, test_ys = extract_features(test_dataframe)
# Let's define our label minimum and maximum.
min_label, max_label = float(np.min(train_ys)), float(np.max(train_ys))
# Our lattice models may have predictions above 1.0 due to numerical errors.
# We can subtract this small epsilon value from our output_max to make sure we
# do not predict values outside of our label bound.
numerical_error_epsilon = 1e-5

Définition des valeurs par défaut utilisées pour la formation dans ce guide:

LEARNING_RATE = 0.01
BATCH_SIZE = 128
NUM_EPOCHS = 500
PREFITTING_NUM_EPOCHS = 10

Configurations de fonctionnalités

L'étalonnage des fonctionnalités et les configurations par fonctionnalité sont définis à l'aide de tfl.configs.FeatureConfig . Les configurations d'entités incluent les contraintes de monotonie, la régularisation par entité (voir tfl.configs.RegularizerConfig ) et les tailles de réseau pour les modèles de réseau.

Notez que nous devons spécifier complètement la configuration des fonctionnalités pour toute fonctionnalité que nous voulons que notre modèle reconnaisse. Sinon, le modèle n'aura aucun moyen de savoir qu'une telle fonctionnalité existe.

Calculer les quantiles

Bien que le paramètre par défaut pour pwl_calibration_input_keypoints dans tfl.configs.FeatureConfig soit «quantiles», pour les modèles prédéfinis, nous devons définir manuellement les points clés d'entrée. Pour ce faire, nous définissons d'abord notre propre fonction d'assistance pour le calcul des quantiles.

def compute_quantiles(features,
                      num_keypoints=10,
                      clip_min=None,
                      clip_max=None,
                      missing_value=None):
  # Clip min and max if desired.
  if clip_min is not None:
    features = np.maximum(features, clip_min)
    features = np.append(features, clip_min)
  if clip_max is not None:
    features = np.minimum(features, clip_max)
    features = np.append(features, clip_max)
  # Make features unique.
  unique_features = np.unique(features)
  # Remove missing values if specified.
  if missing_value is not None:
    unique_features = np.delete(unique_features,
                                np.where(unique_features == missing_value))
  # Compute and return quantiles over unique non-missing feature values.
  return np.quantile(
      unique_features,
      np.linspace(0., 1., num=num_keypoints),
      interpolation='nearest').astype(float)

Définition de nos configurations de fonctionnalités

Maintenant que nous pouvons calculer nos quantiles, nous définissons une configuration de fonctionnalité pour chaque fonctionnalité que nous voulons que notre modèle prenne en entrée.

# Feature configs are used to specify how each feature is calibrated and used.
feature_configs = [
    tfl.configs.FeatureConfig(
        name='age',
        lattice_size=3,
        monotonicity='increasing',
        # We must set the keypoints manually.
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            train_xs[feature_name_indices['age']],
            num_keypoints=5,
            clip_max=100),
        # Per feature regularization.
        regularizer_configs=[
            tfl.configs.RegularizerConfig(name='calib_wrinkle', l2=0.1),
        ],
    ),
    tfl.configs.FeatureConfig(
        name='sex',
        num_buckets=2,
    ),
    tfl.configs.FeatureConfig(
        name='cp',
        monotonicity='increasing',
        # Keypoints that are uniformly spaced.
        pwl_calibration_num_keypoints=4,
        pwl_calibration_input_keypoints=np.linspace(
            np.min(train_xs[feature_name_indices['cp']]),
            np.max(train_xs[feature_name_indices['cp']]),
            num=4),
    ),
    tfl.configs.FeatureConfig(
        name='chol',
        monotonicity='increasing',
        # Explicit input keypoints initialization.
        pwl_calibration_input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
        # Calibration can be forced to span the full output range by clamping.
        pwl_calibration_clamp_min=True,
        pwl_calibration_clamp_max=True,
        # Per feature regularization.
        regularizer_configs=[
            tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
        ],
    ),
    tfl.configs.FeatureConfig(
        name='fbs',
        # Partial monotonicity: output(0) <= output(1)
        monotonicity=[(0, 1)],
        num_buckets=2,
    ),
    tfl.configs.FeatureConfig(
        name='trestbps',
        monotonicity='decreasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            train_xs[feature_name_indices['trestbps']], num_keypoints=5),
    ),
    tfl.configs.FeatureConfig(
        name='thalach',
        monotonicity='decreasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            train_xs[feature_name_indices['thalach']], num_keypoints=5),
    ),
    tfl.configs.FeatureConfig(
        name='restecg',
        # Partial monotonicity: output(0) <= output(1), output(0) <= output(2)
        monotonicity=[(0, 1), (0, 2)],
        num_buckets=3,
    ),
    tfl.configs.FeatureConfig(
        name='exang',
        # Partial monotonicity: output(0) <= output(1)
        monotonicity=[(0, 1)],
        num_buckets=2,
    ),
    tfl.configs.FeatureConfig(
        name='oldpeak',
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            train_xs[feature_name_indices['oldpeak']], num_keypoints=5),
    ),
    tfl.configs.FeatureConfig(
        name='slope',
        # Partial monotonicity: output(0) <= output(1), output(1) <= output(2)
        monotonicity=[(0, 1), (1, 2)],
        num_buckets=3,
    ),
    tfl.configs.FeatureConfig(
        name='ca',
        monotonicity='increasing',
        pwl_calibration_num_keypoints=4,
        pwl_calibration_input_keypoints=compute_quantiles(
            train_xs[feature_name_indices['ca']], num_keypoints=4),
    ),
    tfl.configs.FeatureConfig(
        name='thal',
        # Partial monotonicity:
        # output(normal) <= output(fixed)
        # output(normal) <= output(reversible)
        monotonicity=[('normal', 'fixed'), ('normal', 'reversible')],
        num_buckets=3,
        # We must specify the vocabulary list in order to later set the
        # monotonicities since we used names and not indices.
        vocabulary_list=thal_vocab_list,
    ),
]

Ensuite, nous devons nous assurer de définir correctement les monotonicités pour les fonctionnalités où nous avons utilisé un vocabulaire personnalisé (tel que «thal» ci-dessus).

tfl.premade_lib.set_categorical_monotonicities(feature_configs)

Modèle linéaire calibré

Pour construire un modèle prédéfini TFL, commencez par construire une configuration de modèle à partir de tfl.configs . Un modèle linéaire calibré est construit à l'aide de tfl.configs.CalibratedLinearConfig . Il applique un étalonnage linéaire et catégoriel par morceaux sur les entités d'entrée, suivi d'une combinaison linéaire et d'un étalonnage linéaire par morceaux en sortie en option. Lors de l'utilisation de l'étalonnage de sortie ou lorsque des limites de sortie sont spécifiées, la couche linéaire appliquera une moyenne pondérée aux entrées étalonnées.

Cet exemple crée un modèle linéaire calibré sur les 5 premières entités.

# Model config defines the model structure for the premade model.
linear_model_config = tfl.configs.CalibratedLinearConfig(
    feature_configs=feature_configs[:5],
    use_bias=True,
    # We must set the output min and max to that of the label.
    output_min=min_label,
    output_max=max_label,
    output_calibration=True,
    output_calibration_num_keypoints=10,
    output_initialization=np.linspace(min_label, max_label, num=10),
    regularizer_configs=[
        # Regularizer for the output calibrator.
        tfl.configs.RegularizerConfig(name='output_calib_hessian', l2=1e-4),
    ])
# A CalibratedLinear premade model constructed from the given model config.
linear_model = tfl.premade.CalibratedLinear(linear_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(linear_model, show_layer_names=False, rankdir='LR')

png

Maintenant, comme pour tout autre tf.keras.Model , nous compilons et adaptons le modèle à nos données.

linear_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=[tf.keras.metrics.AUC()],
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
linear_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
<tensorflow.python.keras.callbacks.History at 0x7fd5c079a1d0>

Après avoir formé notre modèle, nous pouvons l'évaluer sur notre ensemble de test.

print('Test Set Evaluation...')
print(linear_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
2/2 [==============================] - 0s 1ms/step - loss: 0.4644 - auc: 0.8459
[0.46442732214927673, 0.8458647131919861]

Modèle de treillis calibré

Un modèle de réseau calibré est construit à l'aide de tfl.configs.CalibratedLatticeConfig . Un modèle de réseau étalonné applique un étalonnage linéaire par morceaux et catégoriel sur les entités d'entrée, suivi d'un modèle de réseau et d'un étalonnage linéaire par morceaux en sortie facultatif.

Cet exemple crée un modèle de réseau calibré sur les 5 premières entités.

# This is a calibrated lattice model: inputs are calibrated, then combined
# non-linearly using a lattice layer.
lattice_model_config = tfl.configs.CalibratedLatticeConfig(
    feature_configs=feature_configs[:5],
    output_min=min_label,
    output_max=max_label - numerical_error_epsilon,
    output_initialization=[min_label, max_label],
    regularizer_configs=[
        # Torsion regularizer applied to the lattice to make it more linear.
        tfl.configs.RegularizerConfig(name='torsion', l2=1e-2),
        # Globally defined calibration regularizer is applied to all features.
        tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-2),
    ])
# A CalibratedLattice premade model constructed from the given model config.
lattice_model = tfl.premade.CalibratedLattice(lattice_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(lattice_model, show_layer_names=False, rankdir='LR')

png

Comme auparavant, nous compilons, ajustons et évaluons notre modèle.

lattice_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=[tf.keras.metrics.AUC()],
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
lattice_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
print('Test Set Evaluation...')
print(lattice_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
2/2 [==============================] - 0s 2ms/step - loss: 0.4789 - auc_1: 0.8409
[0.4789487421512604, 0.8408521413803101]

Modèle d'ensemble de treillis calibré

Lorsque le nombre d'entités est important, vous pouvez utiliser un modèle d'ensemble, qui crée plusieurs treillis plus petits pour des sous-ensembles d'entités et fait la moyenne de leur sortie au lieu de créer un seul grand treillis. Les modèles de réseau d'ensemble sont construits à l'aide de tfl.configs.CalibratedLatticeEnsembleConfig . Un modèle d'ensemble de réseau étalonné applique un étalonnage linéaire par morceaux et catégoriel à l'entité d'entrée, suivi d'un ensemble de modèles de réseau et d'un étalonnage linéaire par morceaux en sortie facultatif.

Initialisation explicite de l'ensemble de treillis

Si vous savez déjà quels sous-ensembles d'entités vous souhaitez alimenter vos treillis, vous pouvez définir explicitement les treillis à l'aide des noms d'entités. Cet exemple crée un modèle d'ensemble de treillis calibré avec 5 treillis et 3 entités par treillis.

# This is a calibrated lattice ensemble model: inputs are calibrated, then
# combined non-linearly and averaged using multiple lattice layers.
explicit_ensemble_model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
    feature_configs=feature_configs,
    lattices=[['trestbps', 'chol', 'ca'], ['fbs', 'restecg', 'thal'],
              ['fbs', 'cp', 'oldpeak'], ['exang', 'slope', 'thalach'],
              ['restecg', 'age', 'sex']],
    num_lattices=5,
    lattice_rank=3,
    output_min=min_label,
    output_max=max_label - numerical_error_epsilon,
    output_initialization=[min_label, max_label])
# A CalibratedLatticeEnsemble premade model constructed from the given
# model config.
explicit_ensemble_model = tfl.premade.CalibratedLatticeEnsemble(
    explicit_ensemble_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(
    explicit_ensemble_model, show_layer_names=False, rankdir='LR')

png

Comme auparavant, nous compilons, ajustons et évaluons notre modèle.

explicit_ensemble_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=[tf.keras.metrics.AUC()],
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
explicit_ensemble_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
print('Test Set Evaluation...')
print(explicit_ensemble_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
2/2 [==============================] - 0s 2ms/step - loss: 0.4373 - auc_2: 0.8615
[0.437343567609787, 0.8615288734436035]

Ensemble de treillis aléatoire

Si vous ne savez pas quels sous-ensembles d'entités alimenter vos treillis, une autre option consiste à utiliser des sous-ensembles aléatoires d'entités pour chaque treillis. Cet exemple crée un modèle d'ensemble de treillis calibré avec 5 treillis et 3 entités par treillis.

# This is a calibrated lattice ensemble model: inputs are calibrated, then
# combined non-linearly and averaged using multiple lattice layers.
random_ensemble_model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
    feature_configs=feature_configs,
    lattices='random',
    num_lattices=5,
    lattice_rank=3,
    output_min=min_label,
    output_max=max_label - numerical_error_epsilon,
    output_initialization=[min_label, max_label],
    random_seed=42)
# Now we must set the random lattice structure and construct the model.
tfl.premade_lib.set_random_lattice_ensemble(random_ensemble_model_config)
# A CalibratedLatticeEnsemble premade model constructed from the given
# model config.
random_ensemble_model = tfl.premade.CalibratedLatticeEnsemble(
    random_ensemble_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(
    random_ensemble_model, show_layer_names=False, rankdir='LR')

png

Comme auparavant, nous compilons, ajustons et évaluons notre modèle.

random_ensemble_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=[tf.keras.metrics.AUC()],
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
random_ensemble_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
print('Test Set Evaluation...')
print(random_ensemble_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
2/2 [==============================] - 0s 2ms/step - loss: 0.4034 - auc_3: 0.9223
[0.40344616770744324, 0.9223057627677917]

Ensemble de treillis aléatoire de couche RTL

Lorsque vous utilisez un ensemble de treillis aléatoire, vous pouvez spécifier que le modèle utilise une seule couche tfl.layers.RTL . Nous notons que tfl.layers.RTL ne prend en charge que les contraintes de monotonie et doit avoir la même taille de réseau pour toutes les entités et aucune régularisation par entité. Notez que l'utilisation d'un calque tfl.layers.RTL vous permet de mettre à l'échelle des ensembles beaucoup plus grands que d'utiliser des instances tfl.layers.Lattice séparées.

Cet exemple crée un modèle d'ensemble de treillis calibré avec 5 treillis et 3 entités par treillis.

# Make sure our feature configs have the same lattice size, no per-feature
# regularization, and only monotonicity constraints.
rtl_layer_feature_configs = copy.deepcopy(feature_configs)
for feature_config in rtl_layer_feature_configs:
  feature_config.lattice_size = 2
  feature_config.unimodality = 'none'
  feature_config.reflects_trust_in = None
  feature_config.dominates = None
  feature_config.regularizer_configs = None
# This is a calibrated lattice ensemble model: inputs are calibrated, then
# combined non-linearly and averaged using multiple lattice layers.
rtl_layer_ensemble_model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
    feature_configs=rtl_layer_feature_configs,
    lattices='rtl_layer',
    num_lattices=5,
    lattice_rank=3,
    output_min=min_label,
    output_max=max_label - numerical_error_epsilon,
    output_initialization=[min_label, max_label],
    random_seed=42)
# A CalibratedLatticeEnsemble premade model constructed from the given
# model config. Note that we do not have to specify the lattices by calling
# a helper function (like before with random) because the RTL Layer will take
# care of that for us.
rtl_layer_ensemble_model = tfl.premade.CalibratedLatticeEnsemble(
    rtl_layer_ensemble_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(
    rtl_layer_ensemble_model, show_layer_names=False, rankdir='LR')

png

Comme auparavant, nous compilons, ajustons et évaluons notre modèle.

rtl_layer_ensemble_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=[tf.keras.metrics.AUC()],
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
rtl_layer_ensemble_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
print('Test Set Evaluation...')
print(rtl_layer_ensemble_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
2/2 [==============================] - 0s 2ms/step - loss: 0.4287 - auc_4: 0.8684
[0.42873889207839966, 0.8684210777282715]

Ensemble de treillis de cristaux

Premade fournit également un algorithme de disposition des fonctionnalités heuristique, appelé Crystals . Pour utiliser l'algorithme Crystals, nous entraînons d'abord un modèle de pré-ajustement qui estime les interactions de caractéristiques par paires. Nous organisons ensuite l'ensemble final de telle sorte que les entités avec plus d'interactions non linéaires soient dans les mêmes réseaux.

la bibliothèque Premade offre des fonctions d'aide pour construire la configuration du modèle de pré-ajustement et extraire la structure des cristaux. Notez que le modèle de pré-montage n'a pas besoin d'être entièrement formé, donc quelques époques devraient suffire.

Cet exemple crée un modèle d'ensemble de treillis calibré avec 5 treillis et 3 entités par treillis.

# This is a calibrated lattice ensemble model: inputs are calibrated, then
# combines non-linearly and averaged using multiple lattice layers.
crystals_ensemble_model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
    feature_configs=feature_configs,
    lattices='crystals',
    num_lattices=5,
    lattice_rank=3,
    output_min=min_label,
    output_max=max_label - numerical_error_epsilon,
    output_initialization=[min_label, max_label],
    random_seed=42)
# Now that we have our model config, we can construct a prefitting model config.
prefitting_model_config = tfl.premade_lib.construct_prefitting_model_config(
    crystals_ensemble_model_config)
# A CalibratedLatticeEnsemble premade model constructed from the given
# prefitting model config.
prefitting_model = tfl.premade.CalibratedLatticeEnsemble(
    prefitting_model_config)
# We can compile and train our prefitting model as we like.
prefitting_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
prefitting_model.fit(
    train_xs,
    train_ys,
    epochs=PREFITTING_NUM_EPOCHS,
    batch_size=BATCH_SIZE,
    verbose=False)
# Now that we have our trained prefitting model, we can extract the crystals.
tfl.premade_lib.set_crystals_lattice_ensemble(crystals_ensemble_model_config,
                                              prefitting_model_config,
                                              prefitting_model)
# A CalibratedLatticeEnsemble premade model constructed from the given
# model config.
crystals_ensemble_model = tfl.premade.CalibratedLatticeEnsemble(
    crystals_ensemble_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(
    crystals_ensemble_model, show_layer_names=False, rankdir='LR')

png

Comme auparavant, nous compilons, ajustons et évaluons notre modèle.

crystals_ensemble_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=[tf.keras.metrics.AUC()],
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
crystals_ensemble_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
print('Test Set Evaluation...')
print(crystals_ensemble_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
2/2 [==============================] - 0s 2ms/step - loss: 0.4039 - auc_5: 0.8853
[0.40386414527893066, 0.885338306427002]