Aide à protéger la Grande barrière de corail avec tensorflow sur Kaggle Rejoignez Défi

Contraintes de mise en forme pour l'éthique avec Tensorflow Lattice

Voir sur TensorFlow.org Exécuter dans Google Colab Voir la source sur GitHub Télécharger le cahier

Aperçu

Ce tutoriel montre comment la bibliothèque Lattice tensorflow (TFL) peut être utilisé pour former des modèles qui se comportent de façon responsable, et ne viole certaines hypothèses qui sont éthiques ou équitables. En particulier, nous allons nous concentrer sur l' utilisation des contraintes de monotonicité pour éviter injuste de certains Pénalisation attributs. Ce tutoriel comprend des démonstrations des expériences à partir du papier Déontologique éthique par Monotonie Contraintes de forme par Serena Wang et Maya Gupta, publié à AISTATS 2020 .

Nous utiliserons des estimateurs prédéfinis TFL sur des ensembles de données publics, mais notez que tout dans ce didacticiel peut également être fait avec des modèles construits à partir de couches TFL Keras.

Avant de continuer, assurez-vous que votre environnement d'exécution a tous les packages requis installés (tels qu'importés dans les cellules de code ci-dessous).

Installer

Installation du package TF Lattice :

pip install tensorflow-lattice seaborn

Importation des packages requis :

import tensorflow as tf

import logging
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
import sys
import tensorflow_lattice as tfl
logging.disable(sys.maxsize)

Valeurs par défaut utilisées dans ce tutoriel :

# List of learning rate hyperparameters to try.
# For a longer list of reasonable hyperparameters, try [0.001, 0.01, 0.1].
LEARNING_RATES = [0.01]
# Default number of training epochs and batch sizes.
NUM_EPOCHS = 1000
BATCH_SIZE = 1000
# Directory containing dataset files.
DATA_DIR = 'https://raw.githubusercontent.com/serenalwang/shape_constraints_for_ethics/master'

Étude de cas n° 1 : Admissions en faculté de droit

Dans la première partie de ce didacticiel, nous examinerons une étude de cas utilisant l'ensemble de données Law School Admissions du Law School Admissions Council (LSAC). Nous formerons un classificateur pour prédire si un étudiant réussira ou non la barre en utilisant deux caractéristiques : le score LSAT de l'étudiant et le GPA de premier cycle.

Supposons que le score du classificateur a été utilisé pour guider les admissions dans les facultés de droit ou les bourses. Selon les normes sociales basées sur le mérite, nous nous attendrions à ce que les étudiants avec un GPA plus élevé et un score LSAT plus élevé reçoivent un score plus élevé du classificateur. Cependant, nous observerons qu'il est facile pour les modèles de violer ces normes intuitives, et parfois de pénaliser les personnes pour avoir un score GPA ou LSAT plus élevé.

Pour résoudre ce problème injuste Pénalisation, nous pouvons imposer des contraintes de monotonicité de sorte qu'un modèle pénalisant jamais GPA supérieur ou supérieur score LSAT, toutes choses égales. Dans ce tutoriel, nous montrerons comment imposer ces contraintes de monotonie à l'aide de TFL.

Charger les données de la faculté de droit

# Load data file.
law_file_name = 'lsac.csv'
law_file_path = os.path.join(DATA_DIR, law_file_name)
raw_law_df = pd.read_csv(law_file_path, delimiter=',')

Prétraiter l'ensemble de données :

# Define label column name.
LAW_LABEL = 'pass_bar'
def preprocess_law_data(input_df):
  # Drop rows with where the label or features of interest are missing.
  output_df = input_df[~input_df[LAW_LABEL].isna() & ~input_df['ugpa'].isna() &
                       (input_df['ugpa'] > 0) & ~input_df['lsat'].isna()]
  return output_df


law_df = preprocess_law_data(raw_law_df)

Diviser les données en ensembles de train/validation/test

def split_dataset(input_df, random_state=888):
  """Splits an input dataset into train, val, and test sets."""
  train_df, test_val_df = train_test_split(
      input_df, test_size=0.3, random_state=random_state)
  val_df, test_df = train_test_split(
      test_val_df, test_size=0.66, random_state=random_state)
  return train_df, val_df, test_df


law_train_df, law_val_df, law_test_df = split_dataset(law_df)

Visualiser la distribution des données

Tout d'abord, nous allons visualiser la distribution des données. Nous tracerons les scores GPA et LSAT pour tous les étudiants qui ont passé la barre et aussi pour tous les étudiants qui n'ont pas passé la barre.

def plot_dataset_contour(input_df, title):
  plt.rcParams['font.family'] = ['serif']
  g = sns.jointplot(
      x='ugpa',
      y='lsat',
      data=input_df,
      kind='kde',
      xlim=[1.4, 4],
      ylim=[0, 50])
  g.plot_joint(plt.scatter, c='b', s=10, linewidth=1, marker='+')
  g.ax_joint.collections[0].set_alpha(0)
  g.set_axis_labels('Undergraduate GPA', 'LSAT score', fontsize=14)
  g.fig.suptitle(title, fontsize=14)
  # Adust plot so that the title fits.
  plt.subplots_adjust(top=0.9)
  plt.show()
law_df_pos = law_df[law_df[LAW_LABEL] == 1]
plot_dataset_contour(
    law_df_pos, title='Distribution of students that passed the bar')

png

law_df_neg = law_df[law_df[LAW_LABEL] == 0]
plot_dataset_contour(
    law_df_neg, title='Distribution of students that failed the bar')

png

Former un modèle linéaire calibré pour prédire le passage à l'examen du barreau

Ensuite, nous allons former un modèle linéaire calibré de TFL pour prédire si oui ou non un étudiant passera la barre. Les deux caractéristiques d'entrée seront le score LSAT et le GPA de premier cycle, et l'étiquette de formation indiquera si l'étudiant a réussi la barre.

Nous allons d'abord entraîner un modèle linéaire calibré sans aucune contrainte. Ensuite, nous entraînerons un modèle linéaire calibré avec des contraintes de monotonie et observerons la différence dans la sortie et la précision du modèle.

Fonctions d'assistance pour l'apprentissage d'un estimateur linéaire calibré TFL

Ces fonctions seront utilisées pour cette étude de cas de la faculté de droit, ainsi que pour l'étude de cas sur le défaut de crédit ci-dessous.

def train_tfl_estimator(train_df, monotonicity, learning_rate, num_epochs,
                        batch_size, get_input_fn,
                        get_feature_columns_and_configs):
  """Trains a TFL calibrated linear estimator.

  Args:
    train_df: pandas dataframe containing training data.
    monotonicity: if 0, then no monotonicity constraints. If 1, then all
      features are constrained to be monotonically increasing.
    learning_rate: learning rate of Adam optimizer for gradient descent.
    num_epochs: number of training epochs.
    batch_size: batch size for each epoch. None means the batch size is the full
      dataset size.
    get_input_fn: function that returns the input_fn for a TF estimator.
    get_feature_columns_and_configs: function that returns TFL feature columns
      and configs.

  Returns:
    estimator: a trained TFL calibrated linear estimator.

  """
  feature_columns, feature_configs = get_feature_columns_and_configs(
      monotonicity)

  model_config = tfl.configs.CalibratedLinearConfig(
      feature_configs=feature_configs, use_bias=False)

  estimator = tfl.estimators.CannedClassifier(
      feature_columns=feature_columns,
      model_config=model_config,
      feature_analysis_input_fn=get_input_fn(input_df=train_df, num_epochs=1),
      optimizer=tf.keras.optimizers.Adam(learning_rate))

  estimator.train(
      input_fn=get_input_fn(
          input_df=train_df, num_epochs=num_epochs, batch_size=batch_size))
  return estimator


def optimize_learning_rates(
    train_df,
    val_df,
    test_df,
    monotonicity,
    learning_rates,
    num_epochs,
    batch_size,
    get_input_fn,
    get_feature_columns_and_configs,
):
  """Optimizes learning rates for TFL estimators.

  Args:
    train_df: pandas dataframe containing training data.
    val_df: pandas dataframe containing validation data.
    test_df: pandas dataframe containing test data.
    monotonicity: if 0, then no monotonicity constraints. If 1, then all
      features are constrained to be monotonically increasing.
    learning_rates: list of learning rates to try.
    num_epochs: number of training epochs.
    batch_size: batch size for each epoch. None means the batch size is the full
      dataset size.
    get_input_fn: function that returns the input_fn for a TF estimator.
    get_feature_columns_and_configs: function that returns TFL feature columns
      and configs.

  Returns:
    A single TFL estimator that achieved the best validation accuracy.
  """
  estimators = []
  train_accuracies = []
  val_accuracies = []
  test_accuracies = []
  for lr in learning_rates:
    estimator = train_tfl_estimator(
        train_df=train_df,
        monotonicity=monotonicity,
        learning_rate=lr,
        num_epochs=num_epochs,
        batch_size=batch_size,
        get_input_fn=get_input_fn,
        get_feature_columns_and_configs=get_feature_columns_and_configs)
    estimators.append(estimator)
    train_acc = estimator.evaluate(
        input_fn=get_input_fn(train_df, num_epochs=1))['accuracy']
    val_acc = estimator.evaluate(
        input_fn=get_input_fn(val_df, num_epochs=1))['accuracy']
    test_acc = estimator.evaluate(
        input_fn=get_input_fn(test_df, num_epochs=1))['accuracy']
    print('accuracies for learning rate %f: train: %f, val: %f, test: %f' %
          (lr, train_acc, val_acc, test_acc))
    train_accuracies.append(train_acc)
    val_accuracies.append(val_acc)
    test_accuracies.append(test_acc)
  max_index = val_accuracies.index(max(val_accuracies))
  return estimators[max_index]

Fonctions d'assistance pour la configuration des fonctionnalités de l'ensemble de données des facultés de droit

Ces fonctions d'assistance sont spécifiques à l'étude de cas de la faculté de droit.

def get_input_fn_law(input_df, num_epochs, batch_size=None):
  """Gets TF input_fn for law school models."""
  return tf.compat.v1.estimator.inputs.pandas_input_fn(
      x=input_df[['ugpa', 'lsat']],
      y=input_df['pass_bar'],
      num_epochs=num_epochs,
      batch_size=batch_size or len(input_df),
      shuffle=False)


def get_feature_columns_and_configs_law(monotonicity):
  """Gets TFL feature configs for law school models."""
  feature_columns = [
      tf.feature_column.numeric_column('ugpa'),
      tf.feature_column.numeric_column('lsat'),
  ]
  feature_configs = [
      tfl.configs.FeatureConfig(
          name='ugpa',
          lattice_size=2,
          pwl_calibration_num_keypoints=20,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
      tfl.configs.FeatureConfig(
          name='lsat',
          lattice_size=2,
          pwl_calibration_num_keypoints=20,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
  ]
  return feature_columns, feature_configs

Fonctions d'assistance pour la visualisation des sorties de modèles entraînés

def get_predicted_probabilities(estimator, input_df, get_input_fn):
  predictions = estimator.predict(
      input_fn=get_input_fn(input_df=input_df, num_epochs=1))
  return [prediction['probabilities'][1] for prediction in predictions]


def plot_model_contour(estimator, input_df, num_keypoints=20):
  x = np.linspace(min(input_df['ugpa']), max(input_df['ugpa']), num_keypoints)
  y = np.linspace(min(input_df['lsat']), max(input_df['lsat']), num_keypoints)

  x_grid, y_grid = np.meshgrid(x, y)

  positions = np.vstack([x_grid.ravel(), y_grid.ravel()])
  plot_df = pd.DataFrame(positions.T, columns=['ugpa', 'lsat'])
  plot_df[LAW_LABEL] = np.ones(len(plot_df))
  predictions = get_predicted_probabilities(
      estimator=estimator, input_df=plot_df, get_input_fn=get_input_fn_law)
  grid_predictions = np.reshape(predictions, x_grid.shape)

  plt.rcParams['font.family'] = ['serif']
  plt.contour(
      x_grid,
      y_grid,
      grid_predictions,
      colors=('k',),
      levels=np.linspace(0, 1, 11))
  plt.contourf(
      x_grid,
      y_grid,
      grid_predictions,
      cmap=plt.cm.bone,
      levels=np.linspace(0, 1, 11))  # levels=np.linspace(0,1,8));
  plt.xticks(fontsize=20)
  plt.yticks(fontsize=20)

  cbar = plt.colorbar()
  cbar.ax.set_ylabel('Model score', fontsize=20)
  cbar.ax.tick_params(labelsize=20)

  plt.xlabel('Undergraduate GPA', fontsize=20)
  plt.ylabel('LSAT score', fontsize=20)

Entraîner un modèle linéaire calibré sans contrainte (non monotone)

nomon_linear_estimator = optimize_learning_rates(
    train_df=law_train_df,
    val_df=law_val_df,
    test_df=law_test_df,
    monotonicity=0,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_law,
    get_feature_columns_and_configs=get_feature_columns_and_configs_law)
2021-09-30 20:56:50.475180: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
accuracies for learning rate 0.010000: train: 0.949061, val: 0.945876, test: 0.951781
plot_model_contour(nomon_linear_estimator, input_df=law_df)

png

Former un modèle linéaire calibré monotone

mon_linear_estimator = optimize_learning_rates(
    train_df=law_train_df,
    val_df=law_val_df,
    test_df=law_test_df,
    monotonicity=1,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_law,
    get_feature_columns_and_configs=get_feature_columns_and_configs_law)
accuracies for learning rate 0.010000: train: 0.949249, val: 0.945447, test: 0.951781
plot_model_contour(mon_linear_estimator, input_df=law_df)

png

Former d'autres modèles sans contraintes

Nous avons démontré que les modèles linéaires calibrés par TFL pouvaient être entraînés pour être monotones à la fois en termes de score LSAT et de GPA sans trop sacrifier la précision.

Mais, comment le modèle linéaire calibré se compare-t-il à d'autres types de modèles, comme les réseaux de neurones profonds (DNN) ou les arbres à gradient amplifié (GBT) ? Les DNN et les GBT semblent-ils avoir des résultats raisonnablement équitables ? Pour répondre à cette question, nous allons ensuite former un DNN et un GBT non contraints. En fait, nous observerons que le DNN et le GBT violent tous les deux facilement la monotonie du score LSAT et du GPA de premier cycle.

Entraîner un modèle de réseau neuronal profond (DNN) sans contrainte

L'architecture a été précédemment optimisée pour atteindre une précision de validation élevée.

feature_names = ['ugpa', 'lsat']

dnn_estimator = tf.estimator.DNNClassifier(
    feature_columns=[
        tf.feature_column.numeric_column(feature) for feature in feature_names
    ],
    hidden_units=[100, 100],
    optimizer=tf.keras.optimizers.Adam(learning_rate=0.008),
    activation_fn=tf.nn.relu)

dnn_estimator.train(
    input_fn=get_input_fn_law(
        law_train_df, batch_size=BATCH_SIZE, num_epochs=NUM_EPOCHS))
dnn_train_acc = dnn_estimator.evaluate(
    input_fn=get_input_fn_law(law_train_df, num_epochs=1))['accuracy']
dnn_val_acc = dnn_estimator.evaluate(
    input_fn=get_input_fn_law(law_val_df, num_epochs=1))['accuracy']
dnn_test_acc = dnn_estimator.evaluate(
    input_fn=get_input_fn_law(law_test_df, num_epochs=1))['accuracy']
print('accuracies for DNN: train: %f, val: %f, test: %f' %
      (dnn_train_acc, dnn_val_acc, dnn_test_acc))
accuracies for DNN: train: 0.948874, val: 0.946735, test: 0.951559
plot_model_contour(dnn_estimator, input_df=law_df)

png

Entraîner un modèle d'arbres améliorés par gradient (GBT) sans contrainte

La structure arborescente a été précédemment optimisée pour obtenir une précision de validation élevée.

tree_estimator = tf.estimator.BoostedTreesClassifier(
    feature_columns=[
        tf.feature_column.numeric_column(feature) for feature in feature_names
    ],
    n_batches_per_layer=2,
    n_trees=20,
    max_depth=4)

tree_estimator.train(
    input_fn=get_input_fn_law(
        law_train_df, num_epochs=NUM_EPOCHS, batch_size=BATCH_SIZE))
tree_train_acc = tree_estimator.evaluate(
    input_fn=get_input_fn_law(law_train_df, num_epochs=1))['accuracy']
tree_val_acc = tree_estimator.evaluate(
    input_fn=get_input_fn_law(law_val_df, num_epochs=1))['accuracy']
tree_test_acc = tree_estimator.evaluate(
    input_fn=get_input_fn_law(law_test_df, num_epochs=1))['accuracy']
print('accuracies for GBT: train: %f, val: %f, test: %f' %
      (tree_train_acc, tree_val_acc, tree_test_acc))
accuracies for GBT: train: 0.949249, val: 0.945017, test: 0.950896
plot_model_contour(tree_estimator, input_df=law_df)

png

Étude de cas n° 2 : Défaut de crédit

La deuxième étude de cas que nous examinerons dans ce tutoriel est la prédiction de la probabilité de défaut de crédit d'un individu. Nous utiliserons l'ensemble de données par défaut des clients de carte de crédit du référentiel UCI. Ces données ont été collectées auprès de 30 000 utilisateurs de cartes de crédit taïwanais et contiennent une étiquette binaire indiquant si un utilisateur a fait défaut ou non à un paiement dans une fenêtre temporelle. Les caractéristiques comprennent l'état matrimonial, le sexe, l'éducation et le retard d'un utilisateur pour le paiement de ses factures existantes, pour chacun des mois d'avril à septembre 2005.

Comme nous l'avons fait avec la première étude de cas, nous illustrons à nouveau en utilisant des contraintes de monotonicité pour éviter la pénalisation injuste: si le modèle devait être utilisé pour déterminer le pointage de crédit d'un utilisateur, il pourrait se sentir injuste à beaucoup si elles ont été pénalisés pour payer leurs factures plus tôt, Tout le reste est égal. Ainsi, nous appliquons une contrainte de monotonie qui empêche le modèle de pénaliser les paiements anticipés.

Charger les données de crédit par défaut

# Load data file.
credit_file_name = 'credit_default.csv'
credit_file_path = os.path.join(DATA_DIR, credit_file_name)
credit_df = pd.read_csv(credit_file_path, delimiter=',')
# Define label column name.
CREDIT_LABEL = 'default'

Diviser les données en ensembles de train/validation/test

credit_train_df, credit_val_df, credit_test_df = split_dataset(credit_df)

Visualiser la distribution des données

Tout d'abord, nous allons visualiser la distribution des données. Nous tracerons la moyenne et l'erreur standard du taux de défaut observé pour des personnes ayant des statuts matrimoniaux et des statuts de remboursement différents. L'état de remboursement représente le nombre de mois qu'une personne est en retard pour rembourser son prêt (en avril 2005).

def get_agg_data(df, x_col, y_col, bins=11):
  xbins = pd.cut(df[x_col], bins=bins)
  data = df[[x_col, y_col]].groupby(xbins).agg(['mean', 'sem'])
  return data


def plot_2d_means_credit(input_df, x_col, y_col, x_label, y_label):
  plt.rcParams['font.family'] = ['serif']
  _, ax = plt.subplots(nrows=1, ncols=1)
  plt.setp(ax.spines.values(), color='black', linewidth=1)
  ax.tick_params(
      direction='in', length=6, width=1, top=False, right=False, labelsize=18)
  df_single = get_agg_data(input_df[input_df['MARRIAGE'] == 1], x_col, y_col)
  df_married = get_agg_data(input_df[input_df['MARRIAGE'] == 2], x_col, y_col)
  ax.errorbar(
      df_single[(x_col, 'mean')],
      df_single[(y_col, 'mean')],
      xerr=df_single[(x_col, 'sem')],
      yerr=df_single[(y_col, 'sem')],
      color='orange',
      marker='s',
      capsize=3,
      capthick=1,
      label='Single',
      markersize=10,
      linestyle='')
  ax.errorbar(
      df_married[(x_col, 'mean')],
      df_married[(y_col, 'mean')],
      xerr=df_married[(x_col, 'sem')],
      yerr=df_married[(y_col, 'sem')],
      color='b',
      marker='^',
      capsize=3,
      capthick=1,
      label='Married',
      markersize=10,
      linestyle='')
  leg = ax.legend(loc='upper left', fontsize=18, frameon=True, numpoints=1)
  ax.set_xlabel(x_label, fontsize=18)
  ax.set_ylabel(y_label, fontsize=18)
  ax.set_ylim(0, 1.1)
  ax.set_xlim(-2, 8.5)
  ax.patch.set_facecolor('white')
  leg.get_frame().set_edgecolor('black')
  leg.get_frame().set_facecolor('white')
  leg.get_frame().set_linewidth(1)
  plt.show()
plot_2d_means_credit(credit_train_df, 'PAY_0', 'default',
                     'Repayment Status (April)', 'Observed default rate')

png

Former un modèle linéaire calibré pour prédire le taux de défaut de crédit

Ensuite, nous allons former un modèle linéaire calibré de TFL pour prédire si oui ou non une personne par défaut sur un prêt. Les deux caractéristiques d'entrée seront l'état matrimonial de la personne et combien de mois la personne est en retard pour rembourser ses prêts en avril (statut de remboursement). L'étiquette de formation sera de savoir si la personne a fait défaut ou non sur un prêt.

Nous allons d'abord entraîner un modèle linéaire calibré sans aucune contrainte. Ensuite, nous entraînerons un modèle linéaire calibré avec des contraintes de monotonie et observerons la différence dans la sortie et la précision du modèle.

Fonctions d'assistance pour la configuration des fonctionnalités de l'ensemble de données par défaut de crédit

Ces fonctions d'assistance sont spécifiques à l'étude de cas sur le défaut de crédit.

def get_input_fn_credit(input_df, num_epochs, batch_size=None):
  """Gets TF input_fn for credit default models."""
  return tf.compat.v1.estimator.inputs.pandas_input_fn(
      x=input_df[['MARRIAGE', 'PAY_0']],
      y=input_df['default'],
      num_epochs=num_epochs,
      batch_size=batch_size or len(input_df),
      shuffle=False)


def get_feature_columns_and_configs_credit(monotonicity):
  """Gets TFL feature configs for credit default models."""
  feature_columns = [
      tf.feature_column.numeric_column('MARRIAGE'),
      tf.feature_column.numeric_column('PAY_0'),
  ]
  feature_configs = [
      tfl.configs.FeatureConfig(
          name='MARRIAGE',
          lattice_size=2,
          pwl_calibration_num_keypoints=3,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
      tfl.configs.FeatureConfig(
          name='PAY_0',
          lattice_size=2,
          pwl_calibration_num_keypoints=10,
          monotonicity=monotonicity,
          pwl_calibration_always_monotonic=False),
  ]
  return feature_columns, feature_configs

Fonctions d'assistance pour la visualisation des sorties de modèles entraînés

def plot_predictions_credit(input_df,
                            estimator,
                            x_col,
                            x_label='Repayment Status (April)',
                            y_label='Predicted default probability'):
  predictions = get_predicted_probabilities(
      estimator=estimator, input_df=input_df, get_input_fn=get_input_fn_credit)
  new_df = input_df.copy()
  new_df.loc[:, 'predictions'] = predictions
  plot_2d_means_credit(new_df, x_col, 'predictions', x_label, y_label)

Entraîner un modèle linéaire calibré sans contrainte (non monotone)

nomon_linear_estimator = optimize_learning_rates(
    train_df=credit_train_df,
    val_df=credit_val_df,
    test_df=credit_test_df,
    monotonicity=0,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_credit,
    get_feature_columns_and_configs=get_feature_columns_and_configs_credit)
accuracies for learning rate 0.010000: train: 0.818762, val: 0.830065, test: 0.817172
plot_predictions_credit(credit_train_df, nomon_linear_estimator, 'PAY_0')

png

Former un modèle linéaire calibré monotone

mon_linear_estimator = optimize_learning_rates(
    train_df=credit_train_df,
    val_df=credit_val_df,
    test_df=credit_test_df,
    monotonicity=1,
    learning_rates=LEARNING_RATES,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    get_input_fn=get_input_fn_credit,
    get_feature_columns_and_configs=get_feature_columns_and_configs_credit)
accuracies for learning rate 0.010000: train: 0.818762, val: 0.830065, test: 0.817172
plot_predictions_credit(credit_train_df, mon_linear_estimator, 'PAY_0')

png