Phương ngữ 'tfl'

Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.

Phương ngữ TensorFlow Lite.

Phương ngữ này ánh xạ tới các hoạt động của TensorFlow Lite.

bất biến:

  • Tất cả các giá trị thuộc loại Tensor (cụ thể là các đại lượng vô hướng được biểu diễn bằng cách sử dụng các tenxơ không chiều);

hoạt động định nghĩa

tfl.abs (::mlir::TFL::AbsOp)

Toán tử giá trị tuyệt đối

Cho trước một tenxơ x , thao tác này trả về một tenxơ chứa giá trị tuyệt đối của từng phần tử trong x . Ví dụ: nếu x là phần tử đầu vào và y là phần tử đầu ra, thao tác này sẽ tính \(y = |x|\).

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
x tenxơ của số nguyên không dấu 16 bit hoặc số nguyên không dấu 32 bit hoặc giá trị kiểu float 32 bit hoặc loại QI8 hoặc loại QI16

Kết quả:

Kết quả Sự miêu tả
y tenxơ của số nguyên không dấu 16 bit hoặc số nguyên không dấu 32 bit hoặc giá trị kiểu float 32 bit hoặc loại QI8 hoặc loại QI16

tfl.add_n (::mlir::TFL::AddNOp)

toán tử add_n

Thêm tất cả các yếu tố tenxơ đầu vào khôn ngoan.

Đặc điểm: AlwaysSpeculatableImplTrait, Giao hoán

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
inputs tensor của bất kỳ giá trị loại

Kết quả:

Kết quả Sự miêu tả
sum tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 32 bit

tfl.add (::mlir::TFL::AddOp)

Toán tử cộng

Hoạt động bổ sung yếu tố khôn ngoan.

Đặc điểm: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, Giao hoán, QuantizableResult, ResultsBroadcastableShape

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT

Toán hạng:

toán hạng Sự miêu tả
lhs tenxơ của số float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc giá trị loại QI8 hoặc loại QUI8 hoặc loại QI16
rhs tenxơ của số float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc giá trị loại QI8 hoặc loại QUI8 hoặc loại QI16

Kết quả:

Kết quả Sự miêu tả
output tenxơ của số float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc giá trị loại QI8 hoặc loại QUI8 hoặc loại QI16

tfl.arg_max (::mlir::TFL::ArgMaxOp)

Toán tử ArgMax

Trả về chỉ số có giá trị lớn nhất trên các kích thước của một tensor.

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
output_type ::mlir::Thuộc tính thuộc tính dẫn xuất

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số nguyên không dấu 1 bit hoặc số float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 8 bit hoặc các giá trị loại QI8 hoặc loại QUI8
dim tenxơ của các giá trị số nguyên không dấu 32/64 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị số nguyên không dấu 32/64 bit

tfl.arg_min (::mlir::TFL::ArgMinOp)

Toán tử ArgMin

Trả về chỉ số có giá trị nhỏ nhất trên các kích thước của tenxơ. a = [1, 10, 26.9, 2.8, 166.32, 62.3] b = tf.math.argmin(input = a) c = tf.keras.backend.eval(b)

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
output_type ::mlir::Thuộc tính thuộc tính dẫn xuất

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số nguyên không dấu 1 bit hoặc số float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 8 bit hoặc các giá trị loại QI8 hoặc loại QUI8
dim tenxơ của các giá trị số nguyên không dấu 32/64 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị số nguyên không dấu 32/64 bit

tfl.assign_variable (::mlir::TFL::AssignVariableOp)

Gán một giá trị mới cho một biến.

Bất kỳ ReadVariableOp nào có phụ thuộc kiểm soát vào op này đều được đảm bảo trả về giá trị này hoặc giá trị mới hơn tiếp theo của biến.

Giao diện: TflRuntimeVerifyOpInterface

Toán hạng:

toán hạng Sự miêu tả
resource_id tensor giá trị tài nguyên
value tenxơ của số float 32 bit hoặc số float 64 bit hoặc số nguyên không dấu 1 bit hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 8 bit hoặc loại QI8 hoặc loại QUI8 hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc loại QI16 hoặc loại phức hợp với các phần tử float 32-bit hoặc loại phức hợp với các giá trị phần tử float 64-bit

tfl.atan2 (::mlir::TFL::Atan2Op)

Hoạt động Atan2

Phép toán "atan2" tính toán arctang của y/x theo từng phần tử, tôn trọng các dấu của đối số.

Đặc điểm: AlwaysSpeculatableImplTrait, SameOperandsAndResultElementType, SameOperandsAndResultShape

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
y tensor của giá trị float 32-bit hoặc float 64-bit
x tensor của giá trị float 32-bit hoặc float 64-bit

Kết quả:

Kết quả Sự miêu tả
output tensor của giá trị float 32-bit hoặc float 64-bit

tfl.average_pool_2d (::mlir::TFL::AveragePool2DOp)

Toán tử Average_pool_2d

Thực hiện hoạt động tổng hợp trung bình trên đầu vào.

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
filter_height ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
filter_width ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
padding ::mlir::StringAttr thuộc tính chuỗi có giá trị CÙNG hoặc HỢP LỆ
stride_h ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
stride_w ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của các giá trị kiểu float 32 bit hoặc kiểu QI8 hoặc kiểu QUI8 hoặc kiểu QI16

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị kiểu float 32 bit hoặc kiểu QI8 hoặc kiểu QUI8 hoặc kiểu QI16

tfl.basic_lstm (::mlir::TFL::BasicLSTMOp)

Toán tử lstm cơ bản

Toán tử tế bào LSTM cơ bản.

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT
cell_clip ::mlir::FloatAttr Thuộc tính float 32 bit có giá trị không âm
proj_clip ::mlir::FloatAttr Thuộc tính float 32 bit có giá trị không âm
kernel_type ::mlir::TFL::LSTMKernelTypeAttr lstm_kernel_type có giá trị là mlir::TFL::LSTMKernelType::BASIC

Toán hạng:

toán hạng Sự miêu tả
data_input tenxơ của các giá trị kiểu float hoặc QUI8 32 bit
prev_activ_input tenxơ của các giá trị kiểu float hoặc QUI8 32 bit
weights_input tenxơ của các giá trị kiểu float hoặc QUI8 32 bit
biases_input tenxơ của các giá trị kiểu float hoặc QI32 32 bit
prev_state_input tenxơ của các giá trị kiểu float hoặc QI16 32 bit

Kết quả:

Kết quả Sự miêu tả
activ_output Tenxơ 2D của bất kỳ giá trị loại nào
state_output Tenxơ 2D của bất kỳ giá trị loại nào
concat_temp Tenxơ 2D của bất kỳ giá trị loại nào
activ_temp Tenxơ 2D của bất kỳ giá trị loại nào

tfl.batch_matmul (::mlir::TFL::BatchMatMulOp)

Toán tử nhân ma trận hàng loạt

Thực hiện phép nhân ma trận theo đợt trên các đầu vào. Tuân thủ các quy ước của TensorFlow BatchMatMulV2, với sự hỗ trợ cho các kích thước không xác định trong kích thước lô và phát sóng.

Inputs:
  `inputs[0]`: required: input LHS
  `inputs[1]`: required: input RHS
  `adjoint_lhs`: optional: Transpose LHS (default false)
  `adjoint_lhs`: optional: Transpose LHS (default false)

Đặc điểm: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, DynamicRangeQuantizedOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
adj_x ::mlir::BoolAttr thuộc tính bool
adj_y ::mlir::BoolAttr thuộc tính bool
asymmetric_quantize_inputs ::mlir::BoolAttr thuộc tính bool

Toán hạng:

toán hạng Sự miêu tả
x tenxơ của loại float 32 bit hoặc loại QI8 hoặc loại QI16 hoặc giá trị số nguyên không dấu 8 bit
y tenxơ của loại float 32 bit hoặc loại QI8 hoặc loại QI16 hoặc giá trị số nguyên không dấu 8 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của loại float 32 bit hoặc loại QI8 hoặc loại QI16 hoặc giá trị số nguyên không dấu 32 bit

tfl.batch_to_space_nd (::mlir::TFL::BatchToSpaceNdOp)

Toán tử BatchToSpaceNd

Thao tác này định hình lại kích thước "lô" 0 thành kích thước không gian.

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số float 32 bit hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc số nguyên không dấu 8 bit hoặc các giá trị loại QI8 hoặc loại QUI8
block_shape tenxơ của các giá trị số nguyên không dấu 32 bit
indices tenxơ của các giá trị số nguyên không dấu 32 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của số float 32 bit hoặc số nguyên không dấu 16 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc số nguyên không dấu 8 bit hoặc giá trị loại QI8 hoặc loại QUI8

tfl.bidirectional_sequence_lstm (::mlir::TFL::Bi directionSequenceLSTMOp)

Toán tử lstm trình tự hai chiều

Lstm hai chiều về cơ bản là hai lstm, một chạy về phía trước và một chạy lùi. Và đầu ra là sự kết hợp của hai lstms.

Đặc điểm: QuantizableResult

Giao diện: DynamicRangeQuantizedOpInterface, TFL_StatefulOp, TflRuntimeVerifyOpInterface

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT
cell_clip ::mlir::FloatAttr Thuộc tính float 32 bit có giá trị không âm
proj_clip ::mlir::FloatAttr Thuộc tính float 32 bit có giá trị không âm
merge_outputs ::mlir::BoolAttr thuộc tính bool
time_major ::mlir::BoolAttr thuộc tính bool
asymmetric_quantize_inputs ::mlir::BoolAttr thuộc tính bool

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
fw_input_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_input_to_forget_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
fw_input_to_cell_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
fw_input_to_output_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
fw_recurrent_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_recurrent_to_forget_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
fw_recurrent_to_cell_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
fw_recurrent_to_output_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
fw_cell_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_cell_to_forget_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_cell_to_output_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_input_gate_bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_forget_gate_bias tenxơ của các giá trị float 32 bit
fw_cell_bias tenxơ của các giá trị float 32 bit
fw_output_gate_bias tenxơ của các giá trị float 32 bit
fw_projection_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_projection_bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_input_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_input_to_forget_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
bw_input_to_cell_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
bw_input_to_output_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
bw_recurrent_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_recurrent_to_forget_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
bw_recurrent_to_cell_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
bw_recurrent_to_output_weights tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit
bw_cell_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_cell_to_forget_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_cell_to_output_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_input_gate_bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_forget_gate_bias tenxơ của các giá trị float 32 bit
bw_cell_bias tenxơ của các giá trị float 32 bit
bw_output_gate_bias tenxơ của các giá trị float 32 bit
bw_projection_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_projection_bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_input_activation_state tensor trạng thái
fw_input_cell_state tensor trạng thái
bw_input_activation_state tensor trạng thái
bw_input_cell_state tensor trạng thái
aux_input tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_aux_input_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_aux_input_to_forget_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_aux_input_to_cell_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
fw_aux_input_to_output_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_aux_input_to_input_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_aux_input_to_forget_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_aux_input_to_cell_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào
bw_aux_input_to_output_weights tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào

Kết quả:

Kết quả Sự miêu tả
fw_output tensor của bất kỳ giá trị loại
bw_output tensor của bất kỳ giá trị loại

tfl.broadcast_args (::mlir::TFL::BroadcastArgsOp)

Trả lại hình dạng của s0 op s1 với quảng bá.

Cho s0s1 , các tenxơ đại diện cho hình dạng, tính r0 , hình dạng được phát sóng. s0 , s1r0 đều là các vectơ nguyên.

Đặc điểm: AlwaysSpeculatableImplTrait

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
s0 tenxơ của các giá trị số nguyên không dấu 32/64 bit
s1 tenxơ của các giá trị số nguyên không dấu 32/64 bit

Kết quả:

Kết quả Sự miêu tả
r0 tenxơ của các giá trị số nguyên không dấu 32/64 bit

tfl.broadcast_to (::mlir::TFL::BroadcastToOp)

Phát một mảng cho một hình dạng tương thích.

Phát sóng là quá trình tạo mảng để có hình dạng tương thích cho các phép tính số học. Hai hình tương thích nếu đối với mỗi cặp kích thước, chúng bằng nhau hoặc một trong số chúng là một. Khi cố gắng phát một Tenor thành một hình dạng, nó bắt đầu với các kích thước theo sau và hoạt động theo cách của nó.

Ví dụ,

x = tf.constant([1, 2, 3]) y = tf.broadcast_to(x, [3, 3]) print(y) tf.Tensor( [[1 2 3] [1 2 3] [1 2 3]], hình dạng=(3, 3), dtype=int32)

Trong ví dụ trên, Tensor đầu vào có hình dạng [1, 3] được truyền tới Tensor đầu ra có hình dạng [3, 3] .

Khi thực hiện các hoạt động được phát sóng chẳng hạn như nhân một tenxơ với một vô hướng, việc phát sóng (thường) mang lại một số lợi ích về thời gian hoặc không gian, vì tenxơ được phát sóng không bao giờ được thực hiện.

Tuy nhiên, broadcast_to không mang theo bất kỳ lợi ích nào như vậy. Tenxơ mới được tạo sẽ chiếm toàn bộ bộ nhớ của hình dạng được phát sóng. (Tuy nhiên, trong ngữ cảnh biểu đồ, broadcast_to có thể được hợp nhất với hoạt động tiếp theo và sau đó được tối ưu hóa.)

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 1 bit hoặc số nguyên không dấu 8 bit hoặc loại QI8 hoặc số nguyên không dấu 8 bit hoặc loại QUI8 hoặc số nguyên không dấu 16 bit hoặc loại QI16 hoặc không dấu 64 bit kiểu số nguyên hoặc phức hợp với các giá trị phần tử float 32 bit
shape tenxơ của các giá trị số nguyên không dấu 32/64 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của số float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 1 bit hoặc số nguyên không dấu 8 bit hoặc loại QI8 hoặc số nguyên không dấu 8 bit hoặc loại QUI8 hoặc số nguyên không dấu 16 bit hoặc loại QI16 hoặc không dấu 64 bit kiểu số nguyên hoặc phức hợp với các giá trị phần tử float 32 bit

tfl.bucketize (::mlir::TFL::BucketizeOp)

Bucketizes 'đầu vào' dựa trên 'ranh giới'.

Ví dụ:

Nếu đầu vào là boundaries = [0, 10, 100]input = [[-5, 10000][150, 10][5, 100]] , thì đầu ra sẽ là output = [[0, 3][3, 2][1, 3]] .

Đặc điểm: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
boundaries ::mlir::ArrayAttr Thuộc tính mảng float 32-bit

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số float 32 bit hoặc số float 64 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị số nguyên không dấu 32 bit

tfl.call_once (::mlir::TFL::CallOnceOp)

Gọi một chức năng khởi tạo

Thao tác này gọi hàm khởi tạo đã cho cho trình khởi tạo phiên trong phương ngữ mô hình đã lưu tf.

Giao diện: TflRuntimeVerifyOpInterface

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
session_init_function ::mlir::StringAttr thuộc tính chuỗi

tfl.cast (::mlir::TFL::CastOp)

Toán tử truyền

Truyền đầu vào từ loại đầu vào sang loại đầu ra.

Đặc điểm: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số float 16 bit hoặc số float 32 bit hoặc số float 64 bit hoặc số nguyên không dấu 1 bit hoặc số nguyên không dấu 16 bit hoặc số nguyên không dấu 16 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 32 bit hoặc 64 bit số nguyên không dấu hoặc loại TFLite quint8 hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 8 bit hoặc loại phức hợp với các giá trị phần tử float 32 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của số float 16 bit hoặc số float 32 bit hoặc số float 64 bit hoặc số nguyên không dấu 1 bit hoặc số nguyên không dấu 16 bit hoặc số nguyên không dấu 16 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 32 bit hoặc 64 bit số nguyên không dấu hoặc loại TFLite quint8 hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 8 bit hoặc loại phức hợp với các giá trị phần tử float 32 bit

tfl.ceil (::mlir::TFL::CeilOp)

điều hành trần

Trả về giá trị trần theo từng phần tử của đầu vào.

Đặc điểm: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Giao diện: Có điều kiệnSpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
x tenxơ của các giá trị float 32 bit

Kết quả:

Kết quả Sự miêu tả
y tenxơ của các giá trị float 32 bit

tfl.complex_abs (::mlir::TFL::ComplexAbsOp)

Tính giá trị tuyệt đối phức của một tensor.

Cho trước một tenxơ x gồm các số phức, thao tác này trả về một tenxơ loại float hoặc double là giá trị tuyệt đối của mỗi phần tử trong x . Tất cả các phần tử trong x phải là số phức có dạng \(a + bj\). Giá trị tuyệt đối được tính là \( \sqrt{a^2 + b^2}\).

Đặc điểm: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
input tenxơ loại phức với các phần tử float 32 bit hoặc loại phức với các giá trị phần tử float 64 bit

Kết quả:

Kết quả Sự miêu tả
output tensor của giá trị float 32-bit hoặc float 64-bit

tfl.concatenation (::mlir::TFL::ConcatenationOp)

Điều hành nối

Nối các tenxơ dọc theo một chiều

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
axis ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT

Toán hạng:

toán hạng Sự miêu tả
values tensor của bất kỳ giá trị loại

Kết quả:

Kết quả Sự miêu tả
output tenxơ của số float 32 bit hoặc số nguyên không dấu 64 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 16 bit hoặc số nguyên không dấu 8 bit hoặc loại QI8 hoặc loại QUI8 hoặc số nguyên không dấu 8 bit hoặc giá trị số nguyên không dấu 1 bit

tfl.pseudo_const (::mlir::TFL::ConstOp)

Hoạt động giả không đổi.

Đại diện cho một giá trị không đổi trong phương ngữ TensorFlow Lite. Đây không phải là một hoạt động thực tế và thay vào đó, nó sẽ được hạ xuống bộ đệm.

Op được phép có tất cả các loại thuộc tính giống như tf.Const (ví dụ: cho phép các thuộc tính TF mờ).

Đặc điểm: AlwaysSpeculatableImplTrait, ConstantLike, FirstAttrDerivedResultType, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
value ::mlir::ElementsAttr thuộc tính vectơ/tenxơ không đổi

Kết quả:

Kết quả Sự miêu tả
output tensor của bất kỳ giá trị loại

tfl.control_node (::mlir::TFL::ControlNodeOp)

The `TFL.control_node` operation wraps single-block operations in order to attach control edges.

Điều này được sử dụng để bọc các vùng và đính kèm các phụ thuộc điều khiển cho chúng. Thông thường, điều này sẽ xảy ra ở một trong những bước cuối cùng trước khi phát ra mô hình bộ đệm phẳng để cho phép tối ưu hóa dựa trên một thứ tự hoạt động cố định (chẳng hạn như tái cấu trúc hóa). sao cho mọi sắp xếp lại thời gian chạy sẽ tôn trọng thứ tự do các phụ thuộc điều khiển đưa ra.

Đặc điểm: HasParent mlir::func::FuncOp , RecursiveMemoryEffects, SingleBlockImplicitTerminator

Toán hạng:

toán hạng Sự miêu tả
controlInputs điều khiển

Kết quả:

Kết quả Sự miêu tả
outputs tensor của bất kỳ giá trị loại
control điều khiển

tfl.conv_2d (::mlir::TFL::Conv2DOp)

Toán tử tích chập

Thực hiện thao tác tích chập trên đầu vào.

Đầu vào: inputs[0] : bắt buộc: đầu vào tenxơ kích hoạt inputs[1] : bắt buộc: inputs[2] : tùy chọn: tenxơ phân cực

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult, quant::AccumulatorUniformScale<2, 0, 1>, quant::AffineOpCoefficiency<0, 1>

Giao diện: AffineQuantizedOpInterface, ConditionallySpeculatable, DynamicRangeQuantizedOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TFL_SparseOp, TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
dilation_h_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
dilation_w_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT
padding ::mlir::StringAttr thuộc tính chuỗi có giá trị CÙNG hoặc HỢP LỆ
stride_h ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
stride_w ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của các giá trị kiểu float 32 bit hoặc kiểu QI8 hoặc kiểu QUI8 hoặc kiểu QI16
filter tensor của giá trị float 32-bit hoặc loại QI4 hoặc loại QI8 hoặc loại QUI8
bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị kiểu float 32 bit hoặc kiểu QI8 hoặc kiểu QUI8 hoặc kiểu QI16

tfl.conv_3d (::mlir::TFL::Conv3DOp)

Toán tử 3D tích chập

Thực hiện thao tác tích chập trên đầu vào 3D. Đầu vào: inputs[0] : bắt buộc: đầu vào tenxơ kích hoạt inputs[1] : bắt buộc: inputs[2] : tùy chọn: tenxơ phân cực

Đặc điểm: AlwaysSpeculatableImplTrait, quant::AccumulatorUniformScale<2, 0, 1>

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
dilation_d_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
dilation_h_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
dilation_w_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT
padding ::mlir::StringAttr thuộc tính chuỗi có giá trị CÙNG hoặc HỢP LỆ
stride_d ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
stride_h ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
stride_w ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của các giá trị float 32 bit
filter tenxơ của các giá trị float 32 bit
bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị float 32 bit

tfl.conv_3d_transpose (::mlir::TFL::Conv3DTransposeOp)

Toán tử chuyển đổi Convolution 3D

Thực hiện thao tác chuyển đổi tích chập trên đầu vào 3D. Đầu vào: inputs[0] : bắt buộc: hình dạng của tenxơ đầu ra đầu vào inputs[1] : bắt buộc: tenxơ trọng lượng bộ lọc inputs[2] : bắt buộc: đầu vào tenxơ kích hoạt đầu vào inputs[3] : tùy chọn: tenxơ phân cực

Đặc điểm: AlwaysSpeculatableImplTrait, quant::AccumulatorUniformScale<2, 0, 1>

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
dilation_d_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
dilation_h_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
dilation_w_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT
padding ::mlir::StringAttr thuộc tính chuỗi có giá trị CÙNG hoặc HỢP LỆ
stride_d ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
stride_h ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
stride_w ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit

Toán hạng:

toán hạng Sự miêu tả
output_shape tenxơ của các giá trị số nguyên không dấu 32 bit
filter tenxơ của các giá trị float 32 bit
input tenxơ của các giá trị float 32 bit
bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị float 32 bit

tfl.cos (::mlir::TFL::CosOp)

toán tử cosin

Tính toán Cosine theo từng phần tử của đầu vào

Đặc điểm: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Giao diện: Có điều kiệnSpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
x tenxơ của các giá trị float 32 bit

Kết quả:

Kết quả Sự miêu tả
y tenxơ của các giá trị float 32 bit

tfl.cumsum (::mlir::TFL::CumsumOp)

Toán tử kiêm tổng

Tính tổng tích lũy của tensor x dọc theo trục.

Đặc điểm: AlwaysSpeculatableImplTrait

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
exclusive ::mlir::BoolAttr thuộc tính bool
reverse ::mlir::BoolAttr thuộc tính bool

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số nguyên float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit
axis tenxơ của các giá trị số nguyên không dấu 32 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của số nguyên float 32 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit

tfl.custom (::mlir::TFL::CustomOp)

tùy chỉnh

Một hoạt động chung cho bất kỳ hoạt động tùy chỉnh TFLite nào.

đầu vào: Một danh sách các đầu vào trong op ban đầu. custom_code: Một chuỗi được sử dụng để xác định chính xác op này là gì, tương ứng với operator_codes.custom_code trong bộ đệm phẳng. custom_option: một ngăn chứa để lưu các thuộc tính op theo kiểu byte. đầu ra: Một danh sách các đầu ra trong op gốc.

Giao diện: TflRuntimeVerifyOpInterface

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
custom_code ::mlir::StringAttr thuộc tính chuỗi
custom_option ::mlir::TFL::ConstBytesAttr Một đại diện thuộc tính chuỗi của các byte được biên dịch

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào

Kết quả:

Kết quả Sự miêu tả
output tensor của bất kỳ giá trị loại

tfl.custom_tf (::mlir::TFL::CustomTfOp)

Wrapper Op cho hoạt động tùy chỉnh TF.

Một op bao bọc xung quanh bất kỳ op TF tùy chỉnh nào. Chúng bao gồm các op được xác định bằng custom_opdefs hoặc được liên kết không được xác định trong phương ngữ TF. Op này chỉ gói gọn op tùy chỉnh bên trong một vùng. Lưu ý #1, Op này sẽ không bao gồm các op tùy chỉnh TF Lite được xác định bằng CustomOp. Lưu ý #2, op này chỉ là biểu diễn bên trong bên trong bộ chuyển đổi và không được hiển thị/xuất khi mô hình được xuất sang Flatbuffer.

Đặc điểm: IsolatedFromAbove, RecursiveMemoryEffects, SingleBlockImplicitTerminator

Giao diện: InferTypeOpInterface, TflRuntimeVerifyOpInterface

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào

Kết quả:

Kết quả Sự miêu tả
output tensor của bất kỳ giá trị loại

tfl.densify (::mlir::TFL::DensifyOp)

nhà điều hành mật độ

Chuyển đổi tensor thưa thớt sang định dạng dày đặc.

Đặc điểm: AlwaysSpeculatableImplTrait

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị số nguyên không dấu 32 bit hoặc 8 bit

tfl.depth_to_space (::mlir::TFL::DepthToSpaceOp)

Toán tử DepthToSpace

Sắp xếp lại dữ liệu từ chiều sâu thành các khối dữ liệu không gian. Đây là phép biến đổi ngược của SpaceToDepth. Cụ thể hơn, thao tác này xuất ra một bản sao của tenxơ đầu vào trong đó các giá trị từ chiều depth được di chuyển trong các khối không gian sang các chiều heightwidth . attr block_size cho biết kích thước khối đầu vào và cách dữ liệu được di chuyển.

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
block_size ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit có giá trị dương

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của số float 32 bit hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc loại TFLite quint8 hoặc số nguyên không dấu 8 bit hoặc giá trị loại QI8 hoặc loại QUI8

Kết quả:

Kết quả Sự miêu tả
output tenxơ của số float 32 bit hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc loại TFLite quint8 hoặc số nguyên không dấu 8 bit hoặc giá trị loại QI8 hoặc loại QUI8

tfl.depthwise_conv_2d (::mlir::TFL::DepthwiseConv2DOp)

Toán tử tích chập có thể phân tách theo chiều sâu

Thực hiện thao tác tích chập trên đầu vào.

Đầu vào: inputs[0] : bắt buộc: đầu vào tenxơ kích hoạt inputs[1] : bắt buộc: inputs[2] : tùy chọn: tenxơ phân cực

Đặc điểm: AlwaysSpeculatableImplTrait, QuantizableResult, quant::AccumulatorUniformScale<2, 0, 1>, quant::AffineOpCoefficiency<3, 1>

Giao diện: AffineQuantizedOpInterface, Có điều kiện suy đoán, DynamicRangeQuantizedOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TFL_SparseOp, TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
dilation_h_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
dilation_w_factor ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT
padding ::mlir::StringAttr thuộc tính chuỗi có giá trị CÙNG hoặc HỢP LỆ
stride_h ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
stride_w ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit
depth_multiplier ::mlir::IntegerAttr Thuộc tính số nguyên không dấu 32 bit

Toán hạng:

toán hạng Sự miêu tả
input tenxơ của các giá trị kiểu float 32 bit hoặc kiểu QI8 hoặc kiểu QUI8 hoặc kiểu QI16
filter tensor của giá trị float 32-bit hoặc loại QI4 hoặc loại QI8 hoặc loại QUI8
bias tenxơ của bất kỳ giá trị loại nào hoặc không có loại nào

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị kiểu float 32 bit hoặc kiểu QI8 hoặc kiểu QUI8 hoặc kiểu QI16

tfl.dequantize (::mlir::TFL::DequantizeOp)

Dequantize toán tử

Chuyển đổi mảng số nguyên đã lượng tử hóa thành dấu phẩy động theo các tham số lượng tử hóa.

Giao diện: NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
input tenxơ loại QI4 hoặc loại QI8 hoặc loại QUI8 hoặc loại QI16 hoặc giá trị float 16 bit

Kết quả:

Kết quả Sự miêu tả
output tenxơ của các giá trị float 32 bit

tfl.div (::mlir::TFL::DivOp)

nhà điều hành bộ phận

Hoạt động phân chia yếu tố khôn ngoan.

Đặc điểm: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, ResultsBroadcastableShape

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Thuộc tính:

Thuộc tính Loại MLIR Sự miêu tả
fused_activation_function ::mlir::StringAttr thuộc tính chuỗi có giá trị là NONE hoặc RELU hoặc RELU_N1_TO_1 hoặc RELU6 hoặc TANH hoặc SIGN_BIT

Toán hạng:

toán hạng Sự miêu tả
lhs tensor của 32-bit float hoặc 32-bit số nguyên không dấu hoặc các giá trị kiểu QUI8
rhs tensor của 32-bit float hoặc 32-bit số nguyên không dấu hoặc các giá trị kiểu QUI8

Kết quả:

Kết quả Sự miêu tả
output tensor của 32-bit float hoặc 32-bit số nguyên không dấu hoặc các giá trị kiểu QUI8

tfl.dynamic_update_slice (::mlir::TFL::DynamicUpdateSliceOp)

DynamicUpdateSlice.

DynamicUpdateSlice op có cùng ngữ nghĩa với XLA DynamicUpdateSlice. Tạo ra một kết quả là giá trị của toán hạng mảng đầu vào, với một bản cập nhật lát cắt được ghi đè tại start_indices.

Xem https://www.tensorflow.org/xla/operation_semantics#dynamicupdateslice

Đặc điểm: AlwaysSpeculatableImplTrait

Giao diện: Có thể suy đoán có điều kiện, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Hiệu ứng: MemoryEffects::Effect{}

Toán hạng:

toán hạng Sự miêu tả
operand tenxơ của số nguyên không dấu 1 bit hoặc số nguyên không dấu 8 bit hoặc số nguyên không dấu 32 bit hoặc số nguyên không dấu 64 bit hoặc giá trị float 32 bit
update tensor of 1-bit signless integer or 8-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit float values
start_indices tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 1-bit signless integer or 8-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit float values

tfl.elu (::mlir::TFL::EluOp)

Exponential Linear Unit operator

Computes the exponential linear f(x) -> exp(x) - 1 for x < 0, x for x >= 0. element-wise.

Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or 8-bit signless integer values

Results:

Result Description
y tensor of 32-bit float or 8-bit signless integer values

tfl.embedding_lookup (::mlir::TFL::EmbeddingLookupOp)

Embedding lookup operator

Looks up ids in a list of embedding tensors.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, DynamicRangeQuantizedOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lookup tensor of 32-bit signless integer values
value tensor of 32-bit float or 8-bit signless integer or 8-bit unsigned integer values

Results:

Result Description
output tensor of 32-bit float or 8-bit signless integer or 8-bit unsigned integer values

tfl.equal (::mlir::TFL::EqualOp)

Equal operator

Returns the truth element of x == y element-wise

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, Commutative, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 1-bit signless integer or 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or 8-bit unsigned integer or TFLite string type values
y tensor of 1-bit signless integer or 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or 8-bit unsigned integer or TFLite string type values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.exp (::mlir::TFL::ExpOp)

Natural exponentiation operator

Performs element-wise natural exponentiation operation on input.

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float values

Results:

Result Description
y tensor of 32-bit float values

tfl.expand_dims (::mlir::TFL::ExpandDimsOp)

Inserts a dimension of 1 into a tensor's shape.

Given a tensor input , this operation inserts a dimension of 1 at the dimension index axis of input 's shape. The dimension index axis starts at zero; if you specify a negative number for axis it is counted backward from the end.

This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape [height, width, channels] , you can make it a batch of 1 image with expand_dims(image, 0) , which will make the shape [1, height, width, channels] .

Other examples:

# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

This operation requires that:

-1-input.dims() <= dim <= input.dims()

This operation is related to squeeze() , which removes dimensions of size 1.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of any type values
dim tensor of 32/64-bit signless integer values

Results:

Result Description
output tensor of any type values

tfl.external_const (::mlir::TFL::ExternalConstOp)

External const op.

External const op holds a buffer_index which points to a constant in the flatbuffer.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
buffer_index ::mlir::IntegerAttr 32-bit signless integer attribute

Results:

Result Description
output tensor of any type values

tfl.fake_quant (::mlir::TFL::FakeQuantOp)

FakeQuant operator

Fake-quantize the 'inputs' tensor of type float via float scalars min and max to 'outputs' tensor of same shape as inputs.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
min ::mlir::FloatAttr 32-bit float attribute
max ::mlir::FloatAttr 32-bit float attribute
num_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose minimum value is 2 whose maximum value is 16
narrow_range ::mlir::BoolAttr bool attribute whose value is false

Operands:

Operand Description
input tensor of 32-bit float values

Results:

Result Description
output tensor of 32-bit float values

tfl.fill (::mlir::TFL::FillOp)

Fill the tensor with given value.

Fill the tensor with given value.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
dims tensor of 32/64-bit signless integer values
input tensor of 32-bit float or 16-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or QI8 type or QI16 type or TFLite string type values

Results:

Result Description
result tensor of 32-bit float or 16-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or QI8 type or QI16 type or TFLite string type values

tfl.floor_div (::mlir::TFL::FloorDivOp)

Floor div operator

Element-wise floor div operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer values
rhs tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer values

tfl.floor_mod (::mlir::TFL::FloorModOp)

Division reminder

Element-wise division reminder operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit float values
rhs tensor of 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit float values

Results:

Result Description
output tensor of 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit float values

tfl.floor (::mlir::TFL::FloorOp)

Floor operator

Returns element-wise floor value of the input.

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float values

Results:

Result Description
y tensor of 32-bit float values

tfl.fully_connected (::mlir::TFL::FullyConnectedOp)

Fully connected op

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, quant::AccumulatorUniformScale<2, 0, 1>, quant::AffineOpCoefficient<-1, 1>

Interfaces: AffineQuantizedOpInterface, ConditionallySpeculatable, DynamicRangeQuantizedOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TFL_SparseOp, TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT
weights_format ::mlir::StringAttr string attribute whose value is DEFAULT, or SHUFFLED4x16INT8
keep_num_dims ::mlir::BoolAttr bool attribute
asymmetric_quantize_inputs ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or QI8 type or QUI8 type or QI16 type or QUI16 type values
filter tensor of 32-bit float or QI4 type or QI8 type or QUI8 type or QI16 type values
bias tensor of any type values or none type

Results:

Result Description
output tensor of any type values

tfl.gather_nd (::mlir::TFL::GatherNdOp)

Gather_nd operator

Gather slices from params into a Tensor with shape specified by indices .

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
params tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 64-bit signless integer or 32-bit signless integer or 8-bit unsigned integer or TFLite string type values
indices tensor of 32/64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 64-bit signless integer or 32-bit signless integer or 8-bit unsigned integer or TFLite string type values

tfl.gather (::mlir::TFL::GatherOp)

Gather operator

Gather slices from params axis axis according to indices .

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, DynamicRangeQuantizedOpInterface, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
axis ::mlir::IntegerAttr 32-bit signless integer attribute
batch_dims ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

Operand Description
params tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or TFLite string type or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values
indices tensor of 16-bit signless integer or 32-bit signless integer or 64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or TFLite string type or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values

tfl.gelu (::mlir::TFL::GeluOp)

GELU activation function.

Computes GELU activation function element-wise.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
approximate ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or QI8 type or QUI8 type values

Results:

Result Description
output tensor of 32-bit float or QI8 type or QUI8 type values

tfl.greater_equal (::mlir::TFL::GreaterEqualOp)

Greater_equal operator

Element-wise greater_equal operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type values
rhs tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.greater (::mlir::TFL::GreaterOp)

Greater operator

Element-wise greater operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type values
rhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.hard_swish (::mlir::TFL::HardSwishOp)

Hardswish activation function.

Computes hard-swish activation function f(x) -> (x * relu6(x+3))/6 element-wise.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or QUI8 type or QI8 type values

Results:

Result Description
output tensor of 32-bit float or QUI8 type or QI8 type values

tfl.hashtable_find (::mlir::TFL::HashtableFindOp)

Looks up keys in a table, outputs the corresponding values.

The tensor keys must of the same type as the keys of the table. The output values is of the type of the table values.

The scalar default_value is the value output for keys not present in the table. It must also be of the same type as the table values.

Interfaces: TflRuntimeVerifyOpInterface

Operands:

Operand Description
hash_table tensor of resource values
keys tensor of 32-bit signless integer or TFLite string type or 64-bit signless integer values
default_value tensor of 32-bit float or 32-bit signless integer or TFLite string type or 64-bit signless integer values

Results:

Result Description
out tensor of 32-bit float or 32-bit signless integer or TFLite string type or 64-bit signless integer values

tfl.hashtable_import (::mlir::TFL::HashtableImportOp)

Replaces the contents of the table with the specified keys and values.

The tensor keys must be of the same type as the keys of the table. The tensor values must be of the type of the table values.

Interfaces: TflRuntimeVerifyOpInterface

Operands:

Operand Description
hash_table tensor of resource values
keys tensor of 32-bit signless integer or TFLite string type or 64-bit signless integer values
values tensor of 32-bit float or 32-bit signless integer or TFLite string type or 64-bit signless integer values

tfl.hashtable (::mlir::TFL::HashtableOp)

Creates a non-initialized hash table.

This op creates a hash table, specifying the type of its keys and values. Before using the table you will have to initialize it. After initialization the table will be immutable.

Interfaces: TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
table_id ::mlir::IntegerAttr 32-bit signless integer attribute
key_dtype ::mlir::TypeAttr any type attribute
value_dtype ::mlir::TypeAttr any type attribute

Results:

Result Description
out tensor of resource values

tfl.hashtable_size (::mlir::TFL::HashtableSizeOp)

Computes the number of elements in the given table.

Interfaces: TflRuntimeVerifyOpInterface

Operands:

Operand Description
hash_table tensor of resource values

Results:

Result Description
out tensor of 64-bit signless integer values

tfl.if (::mlir::TFL::IfOp)

if-then-else operation

The tfl.if operation represents an if-then-else construct for conditionally executing two regions of code. The operand to an if operation is a boolean value. For example:

tfl.if %b  {
  ...
} else {
  ...
}

tfl.if may also return results that are defined in its regions. The values defined are determined by which execution path is taken.

Example:

%x, %y = tfl.if %b -> (tensor<f32>, tensor<f32>) {
  %x_true = ...
  %y_true = ...
  tfl.yield %x_true, %y_true : tensor<f32>, tensor<f32>
} else {
  %x_false = ...
  %y_false = ...
  tfl.yield %x_false, %y_false : tensor<f32>, tensor<f32>
}

tfl.if regions are always terminated with "tfl.yield". If "tfl.if" defines no values, the "tfl.yield" can be left out, and will be inserted implicitly. Otherwise, it must be explicit. Also, if "tfl.if" defines one or more values, the 'else' block cannot be omitted.

Example:

tfl.if %b  {
  ...
}

Traits: NoRegionArguments, RecursiveMemoryEffects, SingleBlockImplicitTerminator

Interfaces: RegionBranchOpInterface, TflRuntimeVerifyOpInterface

Operands:

Operand Description
cond tensor of 1-bit signless integer values

Results:

Result Description
results tensor of any type values

tfl.imag (::mlir::TFL::ImagOp)

Returns the imaginary part of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of type float that is the imaginary part of each element in input . All elements in input must be complex numbers of the form \(a + bj\), where a is the real part and b is the imaginary part returned by this operation.

Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of complex type with 32-bit float elements or complex type with 64-bit float elements values

Results:

Result Description
output tensor of 32-bit float or 64-bit float values

tfl.l2_normalization (::mlir::TFL::L2NormalizationOp)

L2 Normalize Operator

L2Normalization Op

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, FixedOutputRangeInterface, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT

Operands:

Operand Description
input tensor of 32-bit float or QUI8 type or QI8 type or QUI16 type or QI16 type or 8-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or QUI8 type or QI8 type or QUI16 type or QI16 type or 8-bit signless integer values

tfl.lstm (::mlir::TFL::LSTMOp)

The full lstm operator

Long short-term memory unit (LSTM) recurrent network layer. The default non-peephole implementation is based on: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf S. Hochreiter and J. Schmidhuber. 'Long Short-Term Memory'. Neural Computation, 9(8):1735-1780, 1997. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays. 'Long short-term memory recurrent neural network architectures for large scale acoustic modeling.' INTERSPEECH, 2014. The coupling of input and forget gate (CIFG) is based on: http://arxiv.org/pdf/1503.04069.pdf Greff et al. 'LSTM: A Search Space Odyssey' The layer normalization is based on: https://arxiv.org/pdf/1607.06450.pdf Ba et al. 'Layer Normalization'

Traits: QuantizableResult

Interfaces: DynamicRangeQuantizedOpInterface, TFL_StatefulOp, TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT
cell_clip ::mlir::FloatAttr 32-bit float attribute whose value is non-negative
proj_clip ::mlir::FloatAttr 32-bit float attribute whose value is non-negative
kernel_type ::mlir::TFL::LSTMKernelTypeAttr lstm_kernel_type whose value is mlir::TFL::LSTMKernelType::FULL
asymmetric_quantize_inputs ::mlir::BoolAttr bool attribute
input_to_input_intermediate ::mlir::TypeAttr any type attribute
input_to_forget_intermediate ::mlir::TypeAttr any type attribute
input_to_cell_intermediate ::mlir::TypeAttr any type attribute
input_to_output_intermediate ::mlir::TypeAttr any type attribute
effective_hidden_scale_intermediate ::mlir::TypeAttr any type attribute

Operands:

Operand Description
input tensor of 32-bit float or QI8 type or QI16 type values
input_to_input_weights tensor of any type values or none type
input_to_forget_weights tensor of 32-bit float or QI8 type values
input_to_cell_weights tensor of 32-bit float or QI8 type values
input_to_output_weights tensor of 32-bit float or QI8 type values
recurrent_to_input_weights tensor of any type values or none type
recurrent_to_forget_weights tensor of 32-bit float or QI8 type values
recurrent_to_cell_weights tensor of 32-bit float or QI8 type values
recurrent_to_output_weights tensor of 32-bit float or QI8 type values
cell_to_input_weights tensor of any type values or none type
cell_to_forget_weights tensor of any type values or none type
cell_to_output_weights tensor of any type values or none type
input_gate_bias tensor of any type values or none type
forget_gate_bias tensor of 32-bit float or QI32 type values
cell_bias tensor of 32-bit float or QI32 type values
output_gate_bias tensor of 32-bit float or QI32 type values
projection_weights tensor of any type values or none type
projection_bias tensor of any type values or none type
input_activation_state stateful tensor
input_cell_state stateful tensor
input_layer_norm_coefficients tensor of any type values or none type
forget_layer_norm_coefficients tensor of any type values or none type
cell_layer_norm_coefficients tensor of any type values or none type
output_layer_norm_coefficients tensor of any type values or none type

Results:

Result Description
output tensor of any type values

tfl.leaky_relu (::mlir::TFL::LeakyReluOp)

Leaky Relu operator

Element-wise Leaky ReLU operator x -> x >= 0 ? x : (alpha * x)

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
alpha ::mlir::FloatAttr 32-bit float attribute

Operands:

Operand Description
input tensor of 32-bit float or QUI8 type or QI8 type or TFLite quint8 type or QI16 type values

Results:

Result Description
output tensor of 32-bit float or QUI8 type or QI8 type or TFLite quint8 type or QI16 type values

tfl.less_equal (::mlir::TFL::LessEqualOp)

Less_equal operator

Element-wise less_equal operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type values
rhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.less (::mlir::TFL::LessOp)

Less operator

Element-wise less operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type values
rhs tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.local_response_normalization (::mlir::TFL::LocalResponseNormalizationOp)

Local Response Normalization.

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius . In detail,

sqr_sum[a, b, c, d] =
    sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta

For details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012) .

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
radius ::mlir::IntegerAttr 32-bit signless integer attribute
bias ::mlir::FloatAttr 32-bit float attribute
alpha ::mlir::FloatAttr 32-bit float attribute
beta ::mlir::FloatAttr 32-bit float attribute

Operands:

Operand Description
input tensor of 32-bit float values

Results:

Result Description
output tensor of 32-bit float values

tfl.log (::mlir::TFL::LogOp)

Natural logarithm operator

Performs element-wise natural logarithm operation on input.

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float values

Results:

Result Description
y tensor of 32-bit float values

tfl.log_softmax (::mlir::TFL::LogSoftmaxOp)

Log softmax operator

Computes element-wise log softmax activations with the following formula

input - log(reduce_sum(exp(input), dim))

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, FixedOutputRangeInterface, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or QUI8 type or QI8 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or QUI8 type or QI8 type or TFLite quint8 type values

tfl.logical_and (::mlir::TFL::LogicalAndOp)

Logical AND operator

Element-wise logical AND operation.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 1-bit signless integer values
rhs tensor of 1-bit signless integer values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.logical_not (::mlir::TFL::LogicalNotOp)

Logical NOT operator

Element-wise logical NOT operation.

Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 1-bit signless integer values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.logical_or (::mlir::TFL::LogicalOrOp)

Logical OR operator

Element-wise logical OR operation.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 1-bit signless integer values
rhs tensor of 1-bit signless integer values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.logistic (::mlir::TFL::LogisticOp)

Logistic operator

Computes element-wise Sigmoid of input

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, FixedOutputRangeInterface, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

Results:

Result Description
y tensor of 32-bit float or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

tfl.matrix_diag (::mlir::TFL::MatrixDiagOp)

Returns a tensor with the provided diagonal and everything else padded with zeros.

Given a diagonal, returns a tensor with the diagonal and everything else padded with zeros. Assume diagonal has k dimensions [I, J, K, ..., N] , then the output is a tensor of rank k+1 with dimensions [I, J, K, ..., N, N] where: output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
diagonal tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QUI8 type or QI8 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QUI8 type or QI8 type or TFLite quint8 type values

tfl.matrix_set_diag (::mlir::TFL::MatrixSetDiagOp)

Returns a batched matrix tensor with new batched diagonal values.

Given input and diagonal , this operation returns a tensor with the same shape and values as input , except for the main diagonal of the innermost matrices. These will be overwritten by the values in diagonal .

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QI16 type or QUI8 type or TFLite quint8 type values
diagonal tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QI16 type or QUI8 type or TFLite quint8 type values

Results:

Result Description
result tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QI16 type or QUI8 type or TFLite quint8 type values

tfl.max_pool_2d (::mlir::TFL::MaxPool2DOp)

Max Pool 2D op

Performs max pool 2D on input.

Inputs: inputs[0] : required: the input tensor

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
padding ::mlir::StringAttr string attribute whose value is SAME, or VALID
stride_w ::mlir::IntegerAttr 32-bit signless integer attribute
stride_h ::mlir::IntegerAttr 32-bit signless integer attribute
filter_width ::mlir::IntegerAttr 32-bit signless integer attribute
filter_height ::mlir::IntegerAttr 32-bit signless integer attribute
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT

Operands:

Operand Description
input tensor of 32-bit float or QUI8 type or QI8 type or QI16 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or QUI8 type or QI8 type or QI16 type or TFLite quint8 type values

tfl.maximum (::mlir::TFL::MaximumOp)

Max operator

Element-wise max operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, Commutative, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values
rhs tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values

Results:

Result Description
max tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values

tfl.mean (::mlir::TFL::MeanOp)

Mean operator

Computes the mean of elements across dimensions of a tensor. Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are retained with length 1.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
keep_dims ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or 8-bit unsigned integer or QI16 type values
axis tensor of 32-bit signless integer or 64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or 8-bit unsigned integer or QI16 type values

tfl.minimum (::mlir::TFL::MinimumOp)

Min operator

Element-wise min operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, Commutative, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values
rhs tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values

Results:

Result Description
min tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values

tfl.mirror_pad (::mlir::TFL::MirrorPadOp)

MirrorPad Operator. Pads a tensor with mirrored values.

This operation pads a input with mirrored values according to the paddings you specify. paddings is an integer tensor with shape [n, 2], where n is the rank of input. For each dimension D of input, paddings[D, 0] indicates how many values to add before the contents of input in that dimension, and paddings[D, 1] indicates how many values to add after the contents of input in that dimension.

Both paddings[D, 0] and paddings[D, 1] must be no greater than input.dim_size(D) (or input.dim_size(D) - 1) if copy_border is true (if false, respectively).

The padded size of each dimension D of the output is:

paddings(D, 0) + input.dim_size(D) + paddings(D, 1)

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
mode ::mlir::TFL::MirrorPaddingTypeAttr mirror_pad_enum

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values
pad tensor of 32-bit signless integer or 64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values

tfl.mul (::mlir::TFL::MulOp)

Multiplication operator

Element-wise multiplication operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, Commutative, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT

Operands:

Operand Description
lhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or complex type with 32-bit float elements values
rhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or complex type with 32-bit float elements values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or complex type with 32-bit float elements values

tfl.multinomial (::mlir::TFL::MultinomialOp)

Draws samples from a categorical distribution.

The generated values will have a categorical distribution based on the logits or unnormalized log-probabilities provided for all classes.

Interfaces: TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
seed ::mlir::IntegerAttr 64-bit signless integer attribute
seed2 ::mlir::IntegerAttr 64-bit signless integer attribute

Operands:

Operand Description
logits tensor of 32-bit float values
num_samples tensor of 32-bit signless integer values

Results:

Result Description
out tensor of 32-bit signless integer or 64-bit signless integer values

tfl.neg (::mlir::TFL::NegOp)

Negation operator

Computes element-wise negation of input

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer values

Results:

Result Description
y tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer values

tfl.no_value (::mlir::TFL::NoValueOp)

constant representing no value.

No value constant op.

Traits: AlwaysSpeculatableImplTrait, ConstantLike

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
value ::mlir::UnitAttr unit attribute

Results:

Result Description
none_val none type

tfl.non_max_suppression_v4 (::mlir::TFL::NonMaxSuppressionV4Op)

Greedily selects a subset of bounding boxes in descending order of score,

pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than score_threshold are removed. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (ie, lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the tf.gather operation . For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
boxes tensor of 32-bit float values
scores tensor of 32-bit float values
max_output_size tensor of 32-bit signless integer values
iou_threshold tensor of 32-bit float values
score_threshold tensor of 32-bit float values

Results:

Result Description
selected_indices tensor of 32-bit signless integer values
valid_outputs tensor of 32-bit signless integer values

tfl.non_max_suppression_v5 (::mlir::TFL::NonMaxSuppressionV5Op)

Greedily selects a subset of bounding boxes in descending order of score,

pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than score_threshold are removed. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (ie, lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the tf.gather operation . For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices) This op also supports a Soft-NMS (with Gaussian weighting) mode (cf Bodla et al, https://arxiv.org/abs/1704.04503 ) where boxes reduce the score of other overlapping boxes instead of directly causing them to be pruned. To enable this Soft-NMS mode, set the soft_nms_sigma parameter to be larger than 0.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
boxes tensor of 32-bit float values
scores tensor of 32-bit float values
max_output_size tensor of 32-bit signless integer values
iou_threshold tensor of 32-bit float values
score_threshold tensor of 32-bit float values
soft_nms_sigma tensor of 32-bit float values

Results:

Result Description
selected_indices tensor of 32-bit signless integer values
selected_scores tensor of 32-bit float values
valid_outputs tensor of 32-bit signless integer values

tfl.not_equal (::mlir::TFL::NotEqualOp)

Not_equal operator

Element-wise not_equal operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, Commutative, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 1-bit signless integer or 32-bit float or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type or TFLite string type values
rhs tensor of 1-bit signless integer or 32-bit float or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type or TFLite string type values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.NumericVerify (::mlir::TFL::NumericVerifyOp)

Verifies the numericals of the two operands

The NumericVerify op is a debugging op to verify the numericals of the two activations. It is a custom op in TFLite. If log_if_failed is true, the NumericVerify op calculates statistics on differences between float and quantized activations, output logs, set differences to the output tensors, and throws an error if errors above tolerance exist. If log_if_failed = false, then it doesn't care about errors.

Traits: QuantizableResult, SameOperandsShape

Interfaces: TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
tolerance ::mlir::FloatAttr 32-bit float attribute
log_if_failed ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of QI8 type or QUI8 type or QI16 type or 16-bit float or TFLite quint8 type values
ref tensor of 32-bit float values

Results:

Result Description
output tensor of 32-bit float values

tfl.one_hot (::mlir::TFL::OneHotOp)

OneHot operator

Returns a one-hot tensor.The locations represented by indices in indices take value on_value , while all other locations take value off_value .

If the input indices is rank N , the output will have rank N+1 , The new axis is created at dimension axis (default: the new axis is appended at the end).

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
axis ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

Operand Description
indices tensor of 32-bit signless integer or 64-bit signless integer values
depth tensor of 32-bit signless integer values
on_value tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer values
off_value tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer values

tfl.prelu (::mlir::TFL::PReluOp)

Parameterized Relu operator

Parameterized Relu operator x -> x >= 0 ? x : (alpha * x) where alpha is a trainable tensor. input and alpha should be the same size as input or be broadcastable.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape, quant::AffineOpCoefficient<-1, 1>

Interfaces: AffineQuantizedOpInterface, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type values
alpha tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type values

tfl.pack (::mlir::TFL::PackOp)

Packs a list of tensors along a dimension into one tensor

Packs a list of values_count rank- R tensors into one rank- (R+1) tensor.

Packs the values_count tensors in values into a tensor with rank one higher than each tensor in values , by packing them along the axis dimension.

Given a list of tensors of shape (A, B, C) ;

if axis == 0 then the output tensor will have the shape (N, A, B, C) . if axis == 1 then the output tensor will have the shape (A, N, B, C) . Etc.

For example:

# 'x' is [1, 4]
# 'y' is [2, 5]
# 'z' is [3, 6]
pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]]  # Pack along first dim.
pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]

This is the opposite of unpack .

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
values_count ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
axis ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

Operand Description
values tensor of any type values

Results:

Result Description
output tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

tfl.pad (::mlir::TFL::PadOp)

Padding operator

This operation pads a input with zeros according to the paddings you specify. paddings is an integer tensor with shape [Dn, 2] , where n is the rank of input . For each dimension D of input , paddings[D, 0] indicates how many zeros to add before the contents of input in that dimension, and paddings[D, 1] indicates how many zeros to add after the contents of input in that dimension.

The padded size of each dimension D of the output is:

paddings(D, 0) + input.dim_size(D) + paddings(D, 1)

For example:

# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
                      [0, 0, 1, 1, 0, 0]
                      [0, 0, 2, 2, 0, 0]
                      [0, 0, 0, 0, 0, 0]]

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values
padding tensor of 32/64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

tfl.padv2 (::mlir::TFL::PadV2Op)

Padding operator v2

This operation pads a input according to the paddings and constant_values you specify. paddings is an integer tensor with shape [Dn, 2] , where n is the rank of input . For each dimension D of input , paddings[D, 0] indicates how many zeros to add before the contents of input in that dimension, and paddings[D, 1] indicates how many zeros to add after the contents of input in that dimension. constant_values is a scalar tensor of the same type as input that indicates the value to use for padding input .

The padded size of each dimension D of the output is:

paddings(D, 0) + input.dim_size(D) + paddings(D, 1)

For example:

# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
                      [0, 0, 1, 1, 0, 0]
                      [0, 0, 2, 2, 0, 0]
                      [0, 0, 0, 0, 0, 0]]

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type values
padding tensor of 32/64-bit signless integer values
constant_values tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type values

tfl.poly_call (::mlir::TFL::PolyCallOp)

Poly call

Have multiple function bodies for the same computation. This allows a program compiler/interpreter to choose one of the available options to execute the program based on which one is most suitable for the target backend.

input: A list of input tensors whose types are T. output: A list of output tensors whose types are T.

call: Multiple regions, each of which encapsulates the same semantic computation but in different forms.

Traits: SingleBlockImplicitTerminator

Interfaces: RegionBranchOpInterface

Operands:

Operand Description
input tensor of any type values

Results:

Result Description
output tensor of any type values

tfl.pow (::mlir::TFL::PowOp)

Power operator

Element-wise power operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 32-bit signless integer values
rhs tensor of 32-bit float or 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer values

tfl.pseudo_qconst (::mlir::TFL::QConstOp)

Quantized constant pseudo op

Represents a quantized constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. The quantization parameters are stored as a type attribute in this constant.

Traits: AlwaysSpeculatableImplTrait, FirstAttrDerivedResultType

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
qtype ::mlir::TypeAttr Tensor type attribute
value ::mlir::ElementsAttr constant vector/tensor attribute

Results:

Result Description
output tensor of QUI8 type or QI8 type or QI16 type or QUI16 type or TFLite quint8 type values

tfl.quantize (::mlir::TFL::QuantizeOp)

Quantize operator

Converts floating point tensors to quantized integer tensors according to the quantization parameters defined in the type attribute.

Traits: FirstAttrDerivedResultType, SameOperandsAndResultShape

Interfaces: NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
qtype ::mlir::TypeAttr Tensor type attribute

Operands:

Operand Description
input tensor of 32-bit float or QI4 type or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

Results:

Result Description
output tensor of QI4 type or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

tfl.rfft2d (::mlir::TFL::RFFT2dOp)

2D real-valued fast Fourier transform.

Computes the 2-dimensional discrete Fourier transform of a real-valued signal over the inner-most 2 dimensions of input .

Since the DFT of a real signal is Hermitian-symmetric, RFFT2D only returns the fft_length / 2 + 1 unique components of the FFT for the inner-most dimension of output : the zero-frequency term, followed by the fft_length / 2 positive-frequency terms.

Along each axis RFFT2D is computed on, if fft_length is smaller than the corresponding dimension of input , the dimension is cropped. If it is larger, the dimension is padded with zeros.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float values
fft_length tensor of 32-bit signless integer values

Results:

Result Description
output tensor of complex type with 32-bit float elements values

tfl.random_standard_normal (::mlir::TFL::RandomStandardNormalOp)

Outputs random values from a normal distribution.

The generated values will have mean 0 and standard deviation 1.

Interfaces: TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
seed ::mlir::IntegerAttr 64-bit signless integer attribute
seed2 ::mlir::IntegerAttr 64-bit signless integer attribute

Operands:

Operand Description
shape tensor of 32-bit signless integer values

Results:

Result Description
out tensor of 32-bit float values

tfl.random_uniform (::mlir::TFL::RandomUniformOp)

Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the range [0, 1) . The lower bound 0 is included in the range, while the upper bound 1 is excluded.

Interfaces: TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
seed ::mlir::IntegerAttr 64-bit signless integer attribute
seed2 ::mlir::IntegerAttr 64-bit signless integer attribute

Operands:

Operand Description
shape tensor of 32-bit signless integer values

Results:

Result Description
out tensor of 32-bit float values

tfl.range (::mlir::TFL::RangeOp)

Range operator

Returns a 1D tensor defined by a sequence from start to limit with a given delta .

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
start tensor of 32-bit signless integer or 32-bit float values
limit tensor of 32-bit signless integer or 32-bit float values
delta tensor of 32-bit signless integer or 32-bit float values

Results:

Result Description
result tensor of 32-bit signless integer or 32-bit float values

tfl.rank (::mlir::TFL::RankOp)

Rank operator.

Returns the rank of a tensor.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of any type values

Results:

Result Description
output tensor of any integer type

tfl.read_variable (::mlir::TFL::ReadVariableOp)

Reads variable value.

Read variable data identified by 'resource_id'.

Interfaces: TflRuntimeVerifyOpInterface

Operands:

Operand Description
resource_id tensor of resource values

Results:

Result Description
result tensor of 32-bit float or 64-bit float or 1-bit signless integer or 8-bit unsigned integer or 8-bit signless integer or QI8 type or QUI8 type or 32-bit signless integer or 64-bit signless integer or QI16 type or complex type with 32-bit float elements or complex type with 64-bit float elements values

tfl.real (::mlir::TFL::RealOp)

Returns the real part of a complex number.

Given a tensor input of complex numbers, this operation returns a tensor of type float that is the real part of each element in input . All elements in input must be complex numbers of the form \(a + bj\), where a is the real part returned by this operation and b is the imaginary part.

Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of complex type with 32-bit float elements or complex type with 64-bit float elements values

Results:

Result Description
output tensor of 32-bit float or 64-bit float values

tfl.reduce_all (::mlir::TFL::ReduceAllOp)

Computes the "logical and" of elements across dimensions of a tensor.

Reduces input along the dimensions given in axis . Unless keep_dims is true, the rank of the tensor is reduced by 1 for each entry in axis . If keep_dims is true, the reduced dimensions are retained with length 1.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
keep_dims ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 1-bit signless integer values
reduction_indices tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.reduce_any (::mlir::TFL::ReduceAnyOp)

Computes the "logical or" of elements across dimensions of a tensor.

Reduces input along the dimensions given in axis . Unless keep_dims is true, the rank of the tensor is reduced by 1 for each entry in axis . If keep_dims is true, the reduced dimensions are retained with length 1.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
keep_dims ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 1-bit signless integer values
reduction_indices tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 1-bit signless integer values

tfl.reduce_max (::mlir::TFL::ReduceMaxOp)

Max-reduction operator

Computes the max reduction along the specified axes

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
keep_dims ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values
axes tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

tfl.reduce_min (::mlir::TFL::ReduceMinOp)

Min-reduction operator

Computes the min reduction along the specified axes

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
keep_dims ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values
axes tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

tfl.reduce_prod (::mlir::TFL::ReduceProdOp)

Prod-reduction operator

Computes the product along the specified axes

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
keep_dims ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values
axes tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

tfl.relu_0_to_1 (::mlir::TFL::Relu0To1Op)

Relu0To1 operator

Element-wise Relu0To1 operator x -> max(0, min(1, x))

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or QUI8 type or QI8 type values

Results:

Result Description
y tensor of 32-bit float or QUI8 type or QI8 type values

tfl.relu_n1_to_1 (::mlir::TFL::Relu1Op)

Relu1 operator

Element-wise Relu1 operator x -> max(-1, min(1, x))

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or QUI8 type or QI8 type values

Results:

Result Description
y tensor of 32-bit float or QUI8 type or QI8 type values

tfl.relu6 (::mlir::TFL::Relu6Op)

Relu6 operator

Element-wise Relu6 operator x -> max(0, min(6, x))

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or QUI8 type or QI8 type values

Results:

Result Description
y tensor of 32-bit float or QUI8 type or QI8 type values

tfl.relu (::mlir::TFL::ReluOp)

Relu operator

Element-wise Relu operator x -> max(0, x)

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or QUI8 type or QI8 type or QI16 type values

Results:

Result Description
y tensor of 32-bit float or QUI8 type or QI8 type or QI16 type values

tfl.reshape (::mlir::TFL::ReshapeOp)

Reshape operator

Produces a tensor with the same values but different static shape defined by the output type.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of any type values
shape tensor of 32-bit signless integer values

Results:

Result Description
output tensor of any type values

tfl.resize_bilinear (::mlir::TFL::ResizeBilinearOp)

ResizeBilinear Op

Resize images to size using bilinear interpolation.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
align_corners ::mlir::BoolAttr bool attribute
half_pixel_centers ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values
size tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values

tfl.resize_nearest_neighbor (::mlir::TFL::ResizeNearestNeighborOp)

ResizeNearestNeighbor Op

Resize images to size using nearest neighbor interpolation.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
align_corners ::mlir::BoolAttr bool attribute
half_pixel_centers ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values
size tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values

tfl.reverse_sequence (::mlir::TFL::ReverseSequenceOp)

Reverses variable length slices.

This op first slices input along the dimension batch_dim , and for each slice i , reverses the first seq_lengths[i] elements along the dimension seq_dim .

The elements of seq_lengths must obey seq_lengths[i] <= input.dims[seq_dim] , and seq_lengths must be a vector of length input.dims[batch_dim] .

The output slice i along dimension batch_dim is then given by input slice i , with the first seq_lengths[i] slices along dimension seq_dim reversed.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
seq_dim ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative
batch_dim ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or TFLite quint8 type values
seq_lengths tensor of 32/64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or TFLite quint8 type values

tfl.reverse_v2 (::mlir::TFL::ReverseV2Op)

ReverseV2 Operator

Reverses specific dimensions of a tensor.

Given a tensor, and a int32/int64 tensor axis representing the set of dimensions of tensor to reverse. This operation reverses each dimension i for which there exists j st axis[j] == i.

Args: tensor: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, float32, bool Up to 8-D.

axis: A Tensor. Must be one of the following types: int32, int64. with only 1 element which is the axis index. TODO: Add support for multiple elements.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 8-bit unsigned integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or QI8 type or TFLite quint8 type or 1-bit signless integer values
axis tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 8-bit unsigned integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or QI8 type or TFLite quint8 type or 1-bit signless integer values

tfl.round (::mlir::TFL::RoundOp)

Round operator

Rounds the values of a tensor to the nearest integer, element-wise.

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float values

Results:

Result Description
y tensor of 32-bit float values

tfl.rsqrt (::mlir::TFL::RsqrtOp)

Reciprocal of square root operator

Computes element-wise reverse square root of input

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or QI8 type or QI16 type values

Results:

Result Description
y tensor of 32-bit float or QI8 type or QI16 type values

tfl.svdf (::mlir::TFL::SVDFOp)

Single value decomposition filter operator

The SVDF op is a decomposition of a densely connected op into low rank filters. For details: https://research.google.com/pubs/pub43813.html https://arxiv.org/abs/1812.02802

Traits: QuantizableResult, quant::AccumulatorUniformScale<3, 2, 4>

Interfaces: DynamicRangeQuantizedOpInterface, TFL_StatefulOp, TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
rank ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT
asymmetric_quantize_inputs ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or QI8 type values
feature_weights tensor of 32-bit float or QI8 type or QUI8 type values
time_weights tensor of 32-bit float or QI16 type values
input_gate_bias tensor of any type values or none type
activation_state stateful tensor

Results:

Result Description
output tensor of 32-bit float or QI8 type values

tfl.scatter_nd (::mlir::TFL::ScatterNdOp)

Scatter_nd operator

Scatter updates into a new tensor according to indices

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
indices tensor of 32-bit signless integer values
updates tensor of 32-bit float or 8-bit signless integer or 64-bit signless integer or 32-bit signless integer or 8-bit unsigned integer or 1-bit signless integer values
shape 1D tensor of any type values

Results:

Result Description
output tensor of 32-bit float or 8-bit signless integer or 64-bit signless integer or 32-bit signless integer or 8-bit unsigned integer or 1-bit signless integer values

tfl.segment_sum (::mlir::TFL::SegmentSumOp)

SegmentSum operator

Computes the sum along segments of a tensor.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer values
segment_ids tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer values

tfl.select (::mlir::TFL::SelectOp)

Select operator

Select values of 'x' if the corresponding value of 'condition' is true or the value of 'y' if false. There are valid condition input sizes:

  1. Either the same shape (in which case the select is elementwise), or
  2. condition must be Rank 1 and match over the first dimension.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
condition tensor of 1-bit signless integer values
x tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values
y tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

tfl.select_v2 (::mlir::TFL::SelectV2Op)

SelectV2 operator

Select values of 'x' if the corresponding value of 'condition' is true or the value of 'y' if false. There are valid condition input sizes:

  1. Either the same shape (in which case the select is elementwise), or
  2. Broadcastable shapes between 'condition', 'x' and 'y'.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
condition tensor of 1-bit signless integer values
x tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values
y tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

tfl.shape (::mlir::TFL::ShapeOp)

Shape operator

Returns the shape of a tensor.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
out_type ::mlir::Attribute derived attribute

Operands:

Operand Description
input tensor of any type values

Results:

Result Description
output tensor of 32-bit signless integer or 64-bit signless integer values

tfl.sign (::mlir::TFL::SignOp)

Sign operation

Returns NaN if x is NaN, 0 if x is 0, -1 if x < 0 and 1 if x > 0.

Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultElementType, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float or 64-bit float or 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 64-bit float or 32-bit signless integer values

tfl.sin (::mlir::TFL::SinOp)

Sine operator

Computes element-wise Sine of input

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float values

Results:

Result Description
y tensor of 32-bit float values

tfl.slice (::mlir::TFL::SliceOp)

Return a slice from 'input'.

The output tensor is a tensor with dimensions described by 'size' whose values are extracted from 'input' starting at the offsets in 'begin'.

begin is zero-based; size is one-based. If size[i] is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: size[i] = input.dim_size(i) - begin[i]

Requirements : 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n)

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 1-bit signless integer or TFLite string type or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values
begin tensor of 32/64-bit signless integer values
size tensor of 32/64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 1-bit signless integer or TFLite string type or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

tfl.softmax (::mlir::TFL::SoftmaxOp)

Softmax operator

Computes element-wise softmax activations with the following formula

exp(input) / tf.reduce_sum(exp(input * beta), dim)

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, FixedOutputRangeInterface, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
beta ::mlir::FloatAttr 32-bit float attribute

Operands:

Operand Description
input tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

Results:

Result Description
output tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

tfl.space_to_batch_nd (::mlir::TFL::SpaceToBatchNdOp)

SpaceToBatchNd operator

This operation reshapes space dimensions into the "batch" dimension 0

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type values
block_shape tensor of 32-bit signless integer values
paddings tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type values

tfl.space_to_depth (::mlir::TFL::SpaceToDepthOp)

SpaceToDepth operator

Rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the input tensor where values from the height and width dimensions are moved to the depth dimension. block_size indicates the input block size.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
block_size ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type values

tfl.pseudo_sparse_const (::mlir::TFL::SparseConstOp)

Sparse constant pseudo op.

Represents a sparse constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead.

Traits: AlwaysSpeculatableImplTrait, FirstAttrDerivedResultType, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
value ::mlir::ElementsAttr constant vector/tensor attribute
s_param ::mlir::TFL::SparsityParameterAttr Sparsity parameter.
compressed_data ::mlir::ElementsAttr constant vector/tensor attribute

Results:

Result Description
output tensor of any type values

tfl.pseudo_sparse_qconst (::mlir::TFL::SparseQConstOp)

Sparse quantized constant pseudo op

Represents a sparse quantized constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. The quantization parameters are stored as a type attribute in this constant.

Traits: AlwaysSpeculatableImplTrait, FirstAttrDerivedResultType

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
qtype ::mlir::TypeAttr Tensor type attribute
value ::mlir::ElementsAttr constant vector/tensor attribute
s_param ::mlir::TFL::SparsityParameterAttr Sparsity parameter.
compressed_data ::mlir::ElementsAttr constant vector/tensor attribute

Results:

Result Description
output tensor of QUI8 type or QI8 type or QI16 type or QUI16 type or TFLite quint8 type values

tfl.sparse_to_dense (::mlir::TFL::SparseToDenseOp)

Converts a sparse representation into a dense tensor.

Builds an array dense with shape output_shape such that

# If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)

# If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]

# If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]

All other values in dense are set to default_value . If sparse_values is a scalar, all sparse indices are set to this single value.

Indices should be sorted in lexicographic order, and indices must not contain any repeats. If validate_indices is true, these properties are checked during execution.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
sparse_indices tensor of 32/64-bit signless integer values
output_shape tensor of 32/64-bit signless integer values
sparse_values tensor of 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or TFLite quint8 type or 32-bit float values
default_value tensor of 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or TFLite quint8 type or 32-bit float values

Results:

Result Description
dense tensor of 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or TFLite quint8 type or 32-bit float values

tfl.split (::mlir::TFL::SplitOp)

Splits a tensor into num_split tensors along one dimension.

Splits the value tensor along split_dim into a number of sub-tensors with same shape as the original one, except for split_dim . Same as tf.Split.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
num_splits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive

Operands:

Operand Description
split_dim tensor of 32-bit signless integer values
value tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values

Results:

Result Description
outputs tensor of any type values

tfl.split_v (::mlir::TFL::SplitVOp)

Splits a tensor into num_split tensors along one dimension.

Splits the value tensor along split_dim into a number of sub-tensors with same shape as the original one, except for split_dim . The grouping of the resultant sub-tensors is decided by size-splits . Same as tf.SplitV.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
num_splits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive

Operands:

Operand Description
value tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values
size_splits 1D tensor of 32-bit signless integer values
split_dim 0D tensor of 32-bit signless integer values

Results:

Result Description
outputs tensor of any type values

tfl.sqrt (::mlir::TFL::SqrtOp)

Square root operator

Computes element-wise Square root of input

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float values

Results:

Result Description
y tensor of 32-bit float values

tfl.square (::mlir::TFL::SquareOp)

Square operator

Computes element-wise Square of input

Traits: AlwaysSpeculatableImplTrait, InferTensorType, TF::SameOperandsAndResultTypeResolveRef

Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
x tensor of 32-bit float values

Results:

Result Description
y tensor of 32-bit float values

tfl.squared_difference (::mlir::TFL::SquaredDifferenceOp)

Squared difference operator

Element-wise squared difference operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
lhs tensor of 32-bit float or 32-bit signless integer or QI8 type values
rhs tensor of 32-bit float or 32-bit signless integer or QI8 type values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or QI8 type values

tfl.squeeze (::mlir::TFL::SqueezeOp)

Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input , this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying squeeze_dims .

For example:

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
squeeze_dims ::mlir::ArrayAttr 64-bit integer array attribute whose size is at most 8

Operands:

Operand Description
input tensor of any type values

Results:

Result Description
output tensor of any type values

tfl.strided_slice (::mlir::TFL::StridedSliceOp)

StridedSlice Op

Return a strided slice from input .

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
begin_mask ::mlir::IntegerAttr 32-bit signless integer attribute
end_mask ::mlir::IntegerAttr 32-bit signless integer attribute
ellipsis_mask ::mlir::IntegerAttr 32-bit signless integer attribute
new_axis_mask ::mlir::IntegerAttr 32-bit signless integer attribute
shrink_axis_mask ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or 1-bit signless integer or 16-bit signless integer or QI16 type or TFLite quint8 type or TFLite string type values
begin tensor of 32-bit signless integer values
end tensor of 32-bit signless integer values
strides tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or 1-bit signless integer or 16-bit signless integer or QI16 type or TFLite quint8 type or TFLite string type values

tfl.sub (::mlir::TFL::SubOp)

Subtraction operator

Element-wise subtraction operation.

Traits: ::mlir::OpTrait::TFLRuntimeOpTrait, AlwaysSpeculatableImplTrait, QuantizableResult, ResultsBroadcastableShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT

Operands:

Operand Description
lhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type values
rhs tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type values

tfl.sum (::mlir::TFL::SumOp)

Sum operator

Computes the sum reduction along the specified axes

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
keep_dims ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values
axes tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values

tfl.tanh (::mlir::TFL::TanhOp)

Hyperbolic tangent operator

Computes element-wise Hyperbolic tangent of input

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, FixedOutputRangeInterface, NoMemoryEffect (MemoryEffectOpInterface), TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

Results:

Result Description
output tensor of 32-bit float or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values

tfl.tile (::mlir::TFL::TileOp)

Tile operator.

Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating input multiples times. The output tensor's i'th dimension has input.dims(i) * multiples[i] elements, and the values of input are replicated multiples[i] times along the 'i'th dimension. For example, tiling [abcd] by [2] produces [abcdabcd].

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 1-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite string type values
multiples tensor of 32/64-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 1-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite string type values

tfl.topk_v2 (::mlir::TFL::TopKV2Op)

TopK operator

Returns the top k largest element along each last dimensional slice of input and the indices of values within the last dimension of the input tensor.

Results are always sorted in the descending order.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 8-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type values
k tensor of 32-bit signless integer values

Results:

Result Description
values tensor of 32-bit float or 8-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type values
indices tensor of 32-bit signless integer values

tfl.transpose_conv (::mlir::TFL::TransposeConvOp)

Transpose convolution operator

Performs transpose convolution operation on input.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, quant::AccumulatorUniformScale<3, 1, 2>, quant::AffineOpCoefficient<0, 1>

Interfaces: AffineQuantizedOpInterface, ConditionallySpeculatable, DynamicRangeQuantizedOpInterface, NoMemoryEffect (MemoryEffectOpInterface), TFL_SparseOp, TflArithmeticCountOpInterface, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
padding ::mlir::StringAttr string attribute whose value is SAME, or VALID
stride_h ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
stride_w ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT

Operands:

Operand Description
output_shape tensor of 32-bit signless integer values
weights tensor of 32-bit float or QI8 type or QUI8 type or QI16 type values
input tensor of 32-bit float or QI8 type or QUI8 type or QI16 type values
bias tensor of any type values or none type

Results:

Result Description
output tensor of 32-bit float or QI8 type or QUI8 type or QI16 type values

tfl.transpose (::mlir::TFL::TransposeOp)

Transpose operator

Returns the Transpose of x

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit signless integer or 32-bit float or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type or 1-bit signless integer or 64-bit signless integer or QI16 type values
perm tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit signless integer or 32-bit float or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type or 1-bit signless integer or 64-bit signless integer or QI16 type values

tfl.unidirectional_sequence_lstm (::mlir::TFL::UnidirectionalSequenceLSTMOp)

Unidirectional sequence lstm operator

A recurrent neural network specified by an LSTM cell. This Op supports unrolling the input along the time or batch dimensions, and implements the following operation for each element in the sequence s = 1...sequence_length: outputs[s] = state = activation(LSTMOp(inputs[s]))

where LSTMOp is LSTM TF Lite Op and the “activation” is the function passed as the “fused_activation_function” argument (if not “NONE”).

Traits: QuantizableResult

Interfaces: DynamicRangeQuantizedOpInterface, InferTypeOpInterface, TFL_StatefulOp, TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT
cell_clip ::mlir::FloatAttr 32-bit float attribute whose value is non-negative
proj_clip ::mlir::FloatAttr 32-bit float attribute whose value is non-negative
time_major ::mlir::BoolAttr bool attribute
asymmetric_quantize_inputs ::mlir::BoolAttr bool attribute
diagonal_recurrent_tensors ::mlir::BoolAttr bool attribute
input_to_input_intermediate ::mlir::TypeAttr any type attribute
input_to_forget_intermediate ::mlir::TypeAttr any type attribute
input_to_cell_intermediate ::mlir::TypeAttr any type attribute
input_to_output_intermediate ::mlir::TypeAttr any type attribute
effective_hidden_scale_intermediate ::mlir::TypeAttr any type attribute

Operands:

Operand Description
input tensor of 32-bit float values
input_to_input_weights tensor of any type values or none type
input_to_forget_weights tensor of 32-bit float or QI8 type values
input_to_cell_weights tensor of 32-bit float or QI8 type values
input_to_output_weights tensor of 32-bit float or QI8 type values
recurrent_to_input_weights tensor of any type values or none type
recurrent_to_forget_weights tensor of 32-bit float or QI8 type values
recurrent_to_cell_weights tensor of 32-bit float or QI8 type values
recurrent_to_output_weights tensor of 32-bit float or QI8 type values
cell_to_input_weights tensor of any type values or none type
cell_to_forget_weights tensor of any type values or none type
cell_to_output_weights tensor of any type values or none type
input_gate_bias tensor of any type values or none type
forget_gate_bias tensor of 32-bit float values
cell_bias tensor of 32-bit float values
output_gate_bias tensor of 32-bit float values
projection_weights tensor of any type values or none type
projection_bias tensor of any type values or none type
input_activation_state stateful tensor
input_cell_state stateful tensor
input_layer_norm_coefficients tensor of any type values or none type
forget_layer_norm_coefficients tensor of any type values or none type
cell_layer_norm_coefficients tensor of any type values or none type
output_layer_norm_coefficients tensor of any type values or none type

Results:

Result Description
output tensor of 32-bit float or QI8 type values

tfl.unidirectional_sequence_rnn (::mlir::TFL::UnidirectionalSequenceRNNOp)

Unidirectional sequence rnn operator

A recurrent neural network specified by an RNN cell. This Op takes in input in a format {batch_size, seq_len, input_size} or {seq_len, batch_size, input_size} if it's time-majored.

It implements the following operation for each element in the sequence s = 1...sequence_length: outputs[s] = state = activation(RNNOp(inputs[s]))

where RNNOp is RNNOp TF Lite Op and the “activation” is the function passed as the “fused_activation_function” argument (if not “NONE”).

Traits: QuantizableResult

Interfaces: DynamicRangeQuantizedOpInterface, TFL_StatefulOp, TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
time_major ::mlir::BoolAttr bool attribute
fused_activation_function ::mlir::StringAttr string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT
asymmetric_quantize_inputs ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of 32-bit float values
input_to_input_weights tensor of 32-bit float or QI8 type values
recurrent_to_input_weights tensor of 32-bit float or QI8 type values
input_gate_bias tensor of 32-bit float values
hidden_state stateful tensor

Results:

Result Description
output tensor of 32-bit float values

tfl.unique (::mlir::TFL::UniqueOp)

Unique Op.

This operation returns a tensor output containing all of the unique elements of input sorted in the same order that they occur in input . This operation also returns a tensor idx the same size as x that contains the index of each value of input in the unique output output . In other words:

Traits: AlwaysSpeculatableImplTrait, QuantizableResult

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
idx_out_type ::mlir::Attribute derived attribute

Operands:

Operand Description
input tensor of 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or 16-bit signless integer or QI16 type or 32-bit signless integer or 64-bit signless integer or 32-bit float values

Results:

Result Description
output tensor of 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or 16-bit signless integer or QI16 type or 32-bit signless integer or 64-bit signless integer or 32-bit float values
idx tensor of 32/64-bit signless integer values

tfl.unpack (::mlir::TFL::UnpackOp)

Unpacks a tensor along a dimension into multiple tensors

Unpacks a given dimension of a rank- R tensor into num rank- (R-1) tensors.

Unpacks num tensors from value by chipping it along the axis dimension. For example, given a tensor of shape (A, B, C, D) ;

If axis == 0 then the i'th tensor in output is the slice value[i, :, :, :] and each tensor in output will have shape (B, C, D) . (Note that the dimension unpacked along is gone, unlike split ).

If axis == 1 then the i'th tensor in output is the slice value[:, i, :, :] and each tensor in output will have shape (A, C, D) . Etc.

This is the opposite of pack .

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface), SameOperandsAndResultsScale, TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

Attribute MLIR Type Description
num ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative
axis ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

Operand Description
input tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit signless integer or QI8 type or QUI8 type or 16-bit signless integer or QI16 type values

Results:

Result Description
outputs tensor of any type values

tfl.unsorted_segment_max (::mlir::TFL::UnsortedSegmentMaxOp)

UnsortedSegmentMax operator

Computes the maximum value along segments of a tensor such that output[i] = max(data[j....]) where segment_ids[j...] = i if the maximum is empty for a given segment ID i, it outputs the smallest possible value for the specific numeric type, output[i] = numeric_limits::lowest(). Note the values of segment_ids are always validated to be less than num_segments and an error is thrown for out-of-bound indices.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer values
segment_ids tensor of 32-bit signless integer values
num_segments tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer values

tfl.unsorted_segment_min (::mlir::TFL::UnsortedSegmentMinOp)

UnsortedSegmentMin operator

Computes the minimum value along segments of a tensor such that output[i] = min(data[j....]) where segment_ids[j...] = i if the minimum is empty for a given segment ID i, it outputs the largest possible value for the specific numeric type, output[i] = numeric_limits::max(). Note the values of segment_ids are always validated to be less than num_segments and an error is thrown for out-of-bound indices.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer values
segment_ids tensor of 32-bit signless integer values
num_segments tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer values

tfl.unsorted_segment_prod (::mlir::TFL::UnsortedSegmentProdOp)

UnsortedSegmentProd operator

Computes the product along segments of a tensor.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer values
segment_ids tensor of 32-bit signless integer values
num_segments tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer values

tfl.unsorted_segment_sum (::mlir::TFL::UnsortedSegmentSumOp)

UnsortedSegmentSum operator

From a tensor segmentation, computes the output resulting from summing together elements mapped to the same segment_id. Ie output[i] is equal to the tensor sum of all elements from the input tensor mapped to segment_id i . If no tensors are mapped to a particular included segment_id, the output at that indice will be a zero tensor with the appropriate shape. Note the values of segment_ids are always validated to be less than num_segments and an error is thrown for out-of-bound indices

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 32-bit float or 32-bit signless integer values
segment_ids tensor of 32-bit signless integer values
num_segments tensor of 32-bit signless integer values

Results:

Result Description
output tensor of 32-bit float or 32-bit signless integer values

tfl.var_handle (::mlir::TFL::VarHandleOp)

Returns a handle to a variable resource from its name.

Returns a handle for a variable resource from its name. container: the container this variable is placed in. shared_name: the name by which this variable is referred to.

Interfaces: TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
container ::mlir::StringAttr string attribute
shared_name ::mlir::StringAttr string attribute

Results:

Result Description
resource_handle tensor of resource values

tfl.where (::mlir::TFL::WhereOp)

Returns locations of nonzero / true values in a tensor.

This operation returns the coordinates of true elements in condition . The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in condition . Indices are output in row-major order.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
condition tensor of 1-bit signless integer or 32-bit float or 32/64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit unsigned integer values

Results:

Result Description
index tensor of 64-bit signless integer values

tfl.while (::mlir::TFL::WhileOp)

While loop

output = input; while (cond(output)) { output = body(output) }

While loop where all values are passes through arguments with implicit capture.

input: A list of input tensors whose types are T. output: A list of output tensors whose types are T. cond: A region that takes 'input' and returns a boolean scalar tensor. body: A region that takes a list of tensors and returns another list of tensors. Both lists have the same types.

Traits: SingleBlockImplicitTerminator

Interfaces: LoopLikeOpInterface, TflRuntimeVerifyOpInterface

Attributes:

Attribute MLIR Type Description
is_stateless ::mlir::BoolAttr bool attribute

Operands:

Operand Description
input tensor of any type values

Results:

Result Description
output tensor of any type values

tfl.yield (::mlir::TFL::YieldOp)

Yield operation

The "yield" operation represents a return operation within the conditional and body of structured control flow (eg, while), and a terminator for ControlNodeOp. The operation takes a variable number of operands and produces no results. The operand number and types must match the signature of the region that contains the operation.

Traits: AlwaysSpeculatableImplTrait, QuantizableResult, Terminator

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
«unnamed» any type

tfl.zeros_like (::mlir::TFL::ZerosLikeOp)

ZerosLike operator

Returns a tensor of zeros with the same shape and type as the input tensor.

Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), TflRuntimeVerifyOpInterface

Effects: MemoryEffects::Effect{}

Operands:

Operand Description
input tensor of 64-bit signless integer or 32-bit signless integer or 32-bit float values

Results:

Result Description
output tensor of 64-bit signless integer or 32-bit signless integer or 32-bit float values

Attribute definition

DimensionMetadataAttr

Dimension metadata.

Syntax:

#tfl.dimension_metadata<
  ::mlir::TFL::DimensionTypeAttr,   # format
  int32_t,   # dense_size
  ::llvm::ArrayRef<int32_t>,   # segments
  ::llvm::ArrayRef<int32_t>   # indices
>

Parameters:

Parameter C++ type Description
format ::mlir::TFL::DimensionTypeAttr dimension_type
dense_size int32_t
segments ::llvm::ArrayRef<int32_t>
indices ::llvm::ArrayRef<int32_t>

SparsityParameterAttr

Sparsity parameter.

Syntax:

#tfl.sparsity_parameter<
  ::llvm::ArrayRef<int32_t>,   # traversal_order
  ::llvm::ArrayRef<int32_t>,   # block_map
  ::llvm::ArrayRef<DimensionMetadataAttr>   # dim_metadata
>

Parameters:

Parameter C++ type Description
traversal_order ::llvm::ArrayRef<int32_t>
block_map ::llvm::ArrayRef<int32_t>
dim_metadata ::llvm::ArrayRef<DimensionMetadataAttr>

ConstBytesAttr

A string attribute representation of compiled bytes

Syntax Examples:

#tfl<const_bytes : "0xDEADBEEF">

Parameters:

Parameter C++ type Description
value ::llvm::StringRef

DimensionTypeAttr

dimension_type

Syntax:

#tfl.dimension_type_attr<
  ::mlir::TFL::DimensionType   # value
>

Parameters:

Parameter C++ type Description
value ::mlir::TFL::DimensionType an enum of type DimensionType

LSTMKernelTypeAttr

lstm_kernel_type

Syntax:

#tfl.lstm_kernel_type_attr<
  ::mlir::TFL::LSTMKernelType   # value
>

Parameters:

Parameter C++ type Description
value ::mlir::TFL::LSTMKernelType an enum of type LSTMKernelType

MirrorPaddingTypeAttr

mirror_pad_enum

Syntax:

#tfl.mirror_pad_attr<
  ::mlir::TFL::MirrorPaddingType   # value
>

Parameters:

Parameter C++ type Description
value ::mlir::TFL::MirrorPaddingType an enum of type MirrorPaddingType