Capas probabilísticas de TFP: codificador automático variacional

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar cuaderno

En este ejemplo mostramos cómo ajustar un Autoencoder Variacional usando las "capas probabilísticas" de TFP.

Dependencias y requisitos previos

Importar

¡Haz las cosas rápido!

Antes de sumergirnos, asegurémonos de que estamos usando una GPU para esta demostración.

Para hacer esto, seleccione "Tiempo de ejecución" -> "Cambiar tipo de tiempo de ejecución" -> "Acelerador de hardware" -> "GPU".

El siguiente fragmento verificará que tenemos acceso a una GPU.

if tf.test.gpu_device_name() != '/device:GPU:0':
  print('WARNING: GPU device not found.')
else:
  print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name()))
SUCCESS: Found GPU: /device:GPU:0

Cargar conjunto de datos

datasets, datasets_info = tfds.load(name='mnist',
                                    with_info=True,
                                    as_supervised=False)

def _preprocess(sample):
  image = tf.cast(sample['image'], tf.float32) / 255.  # Scale to unit interval.
  image = image < tf.random.uniform(tf.shape(image))   # Randomly binarize.
  return image, image

train_dataset = (datasets['train']
                 .map(_preprocess)
                 .batch(256)
                 .prefetch(tf.data.AUTOTUNE)
                 .shuffle(int(10e3)))
eval_dataset = (datasets['test']
                .map(_preprocess)
                .batch(256)
                .prefetch(tf.data.AUTOTUNE))

Tenga en cuenta que preproceso () devuelve por encima de image, image en lugar de sólo image porque Keras está configurado para modelos discriminativos con una (ejemplo, etiqueta) formato de entrada, es decir, \(p\theta(y|x)\). Dado que el objetivo de la VAE es recuperar las x de entrada de sí mismo (es decir, x \(p_\theta(x|x)\)), el par de datos es (ejemplo, ejemplo).

Código VAE Golf

Especificar modelo.

input_shape = datasets_info.features['image'].shape
encoded_size = 16
base_depth = 32
prior = tfd.Independent(tfd.Normal(loc=tf.zeros(encoded_size), scale=1),
                        reinterpreted_batch_ndims=1)
encoder = tfk.Sequential([
    tfkl.InputLayer(input_shape=input_shape),
    tfkl.Lambda(lambda x: tf.cast(x, tf.float32) - 0.5),
    tfkl.Conv2D(base_depth, 5, strides=1,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(base_depth, 5, strides=2,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(2 * base_depth, 5, strides=1,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(2 * base_depth, 5, strides=2,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(4 * encoded_size, 7, strides=1,
                padding='valid', activation=tf.nn.leaky_relu),
    tfkl.Flatten(),
    tfkl.Dense(tfpl.MultivariateNormalTriL.params_size(encoded_size),
               activation=None),
    tfpl.MultivariateNormalTriL(
        encoded_size,
        activity_regularizer=tfpl.KLDivergenceRegularizer(prior)),
])
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py:158: calling LinearOperator.__init__ (from tensorflow.python.ops.linalg.linear_operator) with graph_parents is deprecated and will be removed in a future version.
Instructions for updating:
Do not pass `graph_parents`.  They will  no longer be used.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py:158: calling LinearOperator.__init__ (from tensorflow.python.ops.linalg.linear_operator) with graph_parents is deprecated and will be removed in a future version.
Instructions for updating:
Do not pass `graph_parents`.  They will  no longer be used.
decoder = tfk.Sequential([
    tfkl.InputLayer(input_shape=[encoded_size]),
    tfkl.Reshape([1, 1, encoded_size]),
    tfkl.Conv2DTranspose(2 * base_depth, 7, strides=1,
                         padding='valid', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(2 * base_depth, 5, strides=1,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(2 * base_depth, 5, strides=2,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(base_depth, 5, strides=1,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(base_depth, 5, strides=2,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(base_depth, 5, strides=1,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(filters=1, kernel_size=5, strides=1,
                padding='same', activation=None),
    tfkl.Flatten(),
    tfpl.IndependentBernoulli(input_shape, tfd.Bernoulli.logits),
])
vae = tfk.Model(inputs=encoder.inputs,
                outputs=decoder(encoder.outputs[0]))

Haz inferencia.

negloglik = lambda x, rv_x: -rv_x.log_prob(x)

vae.compile(optimizer=tf.optimizers.Adam(learning_rate=1e-3),
            loss=negloglik)

_ = vae.fit(train_dataset,
            epochs=15,
            validation_data=eval_dataset)
Epoch 1/15
235/235 [==============================] - 14s 61ms/step - loss: 206.5541 - val_loss: 163.1924
Epoch 2/15
235/235 [==============================] - 14s 59ms/step - loss: 151.1891 - val_loss: 143.6748
Epoch 3/15
235/235 [==============================] - 14s 58ms/step - loss: 141.3275 - val_loss: 137.9188
Epoch 4/15
235/235 [==============================] - 14s 58ms/step - loss: 136.7453 - val_loss: 133.2726
Epoch 5/15
235/235 [==============================] - 14s 58ms/step - loss: 132.3803 - val_loss: 131.8343
Epoch 6/15
235/235 [==============================] - 14s 58ms/step - loss: 129.2451 - val_loss: 127.1935
Epoch 7/15
235/235 [==============================] - 14s 59ms/step - loss: 126.0975 - val_loss: 123.6789
Epoch 8/15
235/235 [==============================] - 14s 58ms/step - loss: 124.0565 - val_loss: 122.5058
Epoch 9/15
235/235 [==============================] - 14s 58ms/step - loss: 122.9974 - val_loss: 121.9544
Epoch 10/15
235/235 [==============================] - 14s 58ms/step - loss: 121.7349 - val_loss: 120.8735
Epoch 11/15
235/235 [==============================] - 14s 58ms/step - loss: 121.0856 - val_loss: 120.1340
Epoch 12/15
235/235 [==============================] - 14s 58ms/step - loss: 120.2232 - val_loss: 121.3554
Epoch 13/15
235/235 [==============================] - 14s 58ms/step - loss: 119.8123 - val_loss: 119.2351
Epoch 14/15
235/235 [==============================] - 14s 58ms/step - loss: 119.2685 - val_loss: 118.2133
Epoch 15/15
235/235 [==============================] - 14s 59ms/step - loss: 118.8895 - val_loss: 119.4771

Mira mamá, no Manos ¡Tensores!

# We'll just examine ten random digits.
x = next(iter(eval_dataset))[0][:10]
xhat = vae(x)
assert isinstance(xhat, tfd.Distribution)

Imagen Plot Util

print('Originals:')
display_imgs(x)

print('Decoded Random Samples:')
display_imgs(xhat.sample())

print('Decoded Modes:')
display_imgs(xhat.mode())

print('Decoded Means:')
display_imgs(xhat.mean())
Originals:

png

Decoded Random Samples:

png

Decoded Modes:

png

Decoded Means:

png

# Now, let's generate ten never-before-seen digits.
z = prior.sample(10)
xtilde = decoder(z)
assert isinstance(xtilde, tfd.Distribution)
print('Randomly Generated Samples:')
display_imgs(xtilde.sample())

print('Randomly Generated Modes:')
display_imgs(xtilde.mode())

print('Randomly Generated Means:')
display_imgs(xtilde.mean())
Randomly Generated Samples:

png

Randomly Generated Modes:

png

Randomly Generated Means:

png