Inferencia aproximada para modelos STS con observaciones no gaussianas

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar libreta

Este cuaderno demuestra el uso de herramientas de inferencia aproximada de TFP para incorporar un modelo de observación (no gaussiano) al ajustar y pronosticar con modelos de series de tiempo estructural (STS). En este ejemplo, usaremos un modelo de observación de Poisson para trabajar con datos de conteo discretos.

import time
import matplotlib.pyplot as plt
import numpy as np

import tensorflow.compat.v2 as tf
import tensorflow_probability as tfp

from tensorflow_probability import bijectors as tfb
from tensorflow_probability import distributions as tfd

tf.enable_v2_behavior()

Datos sintéticos

Primero generaremos algunos datos de recuento sintéticos:

num_timesteps = 30
observed_counts = np.round(3 + np.random.lognormal(np.log(np.linspace(
    num_timesteps, 5, num=num_timesteps)), 0.20, size=num_timesteps)) 
observed_counts = observed_counts.astype(np.float32)
plt.plot(observed_counts)
[<matplotlib.lines.Line2D at 0x7f940ae958d0>]

png

Modelo

Especificaremos un modelo simple con una tendencia lineal que camina aleatoriamente:

def build_model(approximate_unconstrained_rates):
  trend = tfp.sts.LocalLinearTrend(
      observed_time_series=approximate_unconstrained_rates)
  return tfp.sts.Sum([trend],
                     observed_time_series=approximate_unconstrained_rates)

En lugar de operar sobre la serie de tiempo observada, este modelo operará sobre la serie de parámetros de tasa de Poisson que gobiernan las observaciones.

Dado que las tasas de Poisson deben ser positivas, usaremos un biyector para transformar el modelo STS de valor real en una distribución sobre valores positivos. El Softplus transformación \(y = \log(1 + \exp(x))\) es una elección natural, ya que es casi lineal para valores positivos, pero otras opciones tales como Exp (que transforma el paseo aleatorio normal en un paseo aleatorio lognormal) también son posibles.

positive_bijector = tfb.Softplus()  # Or tfb.Exp()

# Approximate the unconstrained Poisson rate just to set heuristic priors.
# We could avoid this by passing explicit priors on all model params.
approximate_unconstrained_rates = positive_bijector.inverse(
    tf.convert_to_tensor(observed_counts) + 0.01)
sts_model = build_model(approximate_unconstrained_rates)

Para usar la inferencia aproximada para un modelo de observación no gaussiano, codificaremos el modelo STS como una distribución conjunta de TFP. Las variables aleatorias en esta distribución conjunta son los parámetros del modelo STS, la serie temporal de tasas de Poisson latentes y los recuentos observados.

def sts_with_poisson_likelihood_model():
  # Encode the parameters of the STS model as random variables.
  param_vals = []
  for param in sts_model.parameters:
    param_val = yield param.prior
    param_vals.append(param_val)

  # Use the STS model to encode the log- (or inverse-softplus)
  # rate of a Poisson.
  unconstrained_rate = yield sts_model.make_state_space_model(
      num_timesteps, param_vals)
  rate = positive_bijector.forward(unconstrained_rate[..., 0])
  observed_counts = yield tfd.Poisson(rate, name='observed_counts')

model = tfd.JointDistributionCoroutineAutoBatched(sts_with_poisson_likelihood_model)

Preparación para la inferencia

Queremos inferir las cantidades no observadas en el modelo, dados los conteos observados. Primero, condicionamos la densidad logarítmica conjunta a los conteos observados.

pinned_model = model.experimental_pin(observed_counts=observed_counts)

También necesitaremos un biyector restrictivo para garantizar que la inferencia respete las restricciones de los parámetros del modelo STS (por ejemplo, las escalas deben ser positivas).

constraining_bijector = pinned_model.experimental_default_event_space_bijector()

Inferencia con HMC

Usaremos HMC (específicamente, NUTS) para tomar muestras de la articulación posterior sobre los parámetros del modelo y las tasas de latencia.

Esto será significativamente más lento que ajustar un modelo STS estándar con HMC, ya que además de los parámetros del modelo (un número relativamente pequeño de) también tenemos que inferir la serie completa de tasas de Poisson. Así que ejecutaremos una cantidad relativamente pequeña de pasos; para aplicaciones donde la calidad de la inferencia es crítica, podría tener sentido aumentar estos valores o ejecutar múltiples cadenas.

Configuración del muestreador

Primero especificamos un sampler y, a continuación, utilizar sample_chain para ejecutar ese núcleo de muestreo para producir muestras.

sampler = tfp.mcmc.TransformedTransitionKernel(
    tfp.mcmc.NoUTurnSampler(
        target_log_prob_fn=pinned_model.unnormalized_log_prob,
        step_size=0.1),
    bijector=constraining_bijector)

adaptive_sampler = tfp.mcmc.DualAveragingStepSizeAdaptation(
    inner_kernel=sampler,
    num_adaptation_steps=int(0.8 * num_burnin_steps),
    target_accept_prob=0.75)

initial_state = constraining_bijector.forward(
    type(pinned_model.event_shape)(
        *(tf.random.normal(part_shape)
          for part_shape in constraining_bijector.inverse_event_shape(
              pinned_model.event_shape))))
# Speed up sampling by tracing with `tf.function`.
@tf.function(autograph=False, jit_compile=True)
def do_sampling():
  return tfp.mcmc.sample_chain(
      kernel=adaptive_sampler,
      current_state=initial_state,
      num_results=num_results,
      num_burnin_steps=num_burnin_steps,
      trace_fn=None)

t0 = time.time()
samples = do_sampling()
t1 = time.time()
print("Inference ran in {:.2f}s.".format(t1-t0))
Inference ran in 24.83s.

Podemos verificar la inferencia examinando los rastros de los parámetros. En este caso, parecen haber explorado múltiples explicaciones para los datos, lo cual es bueno, aunque sería útil contar con más muestras para juzgar qué tan bien se está mezclando la cadena.

f = plt.figure(figsize=(12, 4))
for i, param in enumerate(sts_model.parameters):
  ax = f.add_subplot(1, len(sts_model.parameters), i + 1)
  ax.plot(samples[i])
  ax.set_title("{} samples".format(param.name))

png

Ahora para la recompensa: ¡veamos el posterior sobre las tasas de Poisson! También trazaremos el intervalo predictivo del 80% sobre los recuentos observados, y podemos verificar que este intervalo parece contener alrededor del 80% de los recuentos que realmente observamos.

param_samples = samples[:-1]
unconstrained_rate_samples = samples[-1][..., 0]
rate_samples = positive_bijector.forward(unconstrained_rate_samples)

plt.figure(figsize=(10, 4))
mean_lower, mean_upper = np.percentile(rate_samples, [10, 90], axis=0)
pred_lower, pred_upper = np.percentile(np.random.poisson(rate_samples), 
                                       [10, 90], axis=0)

_ = plt.plot(observed_counts, color="blue", ls='--', marker='o', label='observed', alpha=0.7)
_ = plt.plot(np.mean(rate_samples, axis=0), label='rate', color="green", ls='dashed', lw=2, alpha=0.7)
_ = plt.fill_between(np.arange(0, 30), mean_lower, mean_upper, color='green', alpha=0.2)
_ = plt.fill_between(np.arange(0, 30), pred_lower, pred_upper, color='grey', label='counts', alpha=0.2)
plt.xlabel("Day")
plt.ylabel("Daily Sample Size")
plt.title("Posterior Mean")
plt.legend()
<matplotlib.legend.Legend at 0x7f93ffd35550>

png

Previsión

Para pronosticar los conteos observados, usaremos las herramientas estándar de STS para construir una distribución de pronóstico sobre las tasas latentes (en un espacio sin restricciones, nuevamente ya que STS está diseñado para modelar datos de valor real), luego pasaremos los pronósticos muestreados a través de una observación de Poisson modelo:

def sample_forecasted_counts(sts_model, posterior_latent_rates,
                             posterior_params, num_steps_forecast,
                             num_sampled_forecasts):

  # Forecast the future latent unconstrained rates, given the inferred latent
  # unconstrained rates and parameters.
  unconstrained_rates_forecast_dist = tfp.sts.forecast(sts_model,
    observed_time_series=unconstrained_rate_samples,
    parameter_samples=posterior_params,
    num_steps_forecast=num_steps_forecast)

  # Transform the forecast to positive-valued Poisson rates.
  rates_forecast_dist = tfd.TransformedDistribution(
      unconstrained_rates_forecast_dist,
      positive_bijector)

  # Sample from the forecast model following the chain rule:
  # P(counts) = P(counts | latent_rates)P(latent_rates)
  sampled_latent_rates = rates_forecast_dist.sample(num_sampled_forecasts)
  sampled_forecast_counts = tfd.Poisson(rate=sampled_latent_rates).sample()

  return sampled_forecast_counts, sampled_latent_rates

forecast_samples, rate_samples = sample_forecasted_counts(
   sts_model,
   posterior_latent_rates=unconstrained_rate_samples,
   posterior_params=param_samples,
   # Days to forecast:
   num_steps_forecast=30,
   num_sampled_forecasts=100)
forecast_samples = np.squeeze(forecast_samples)
def plot_forecast_helper(data, forecast_samples, CI=90):
  """Plot the observed time series alongside the forecast."""
  plt.figure(figsize=(10, 4))
  forecast_median = np.median(forecast_samples, axis=0)

  num_steps = len(data)
  num_steps_forecast = forecast_median.shape[-1]

  plt.plot(np.arange(num_steps), data, lw=2, color='blue', linestyle='--', marker='o',
           label='Observed Data', alpha=0.7)

  forecast_steps = np.arange(num_steps, num_steps+num_steps_forecast)

  CI_interval = [(100 - CI)/2, 100 - (100 - CI)/2]
  lower, upper = np.percentile(forecast_samples, CI_interval, axis=0)

  plt.plot(forecast_steps, forecast_median, lw=2, ls='--', marker='o', color='orange',
           label=str(CI) + '% Forecast Interval', alpha=0.7)
  plt.fill_between(forecast_steps,
                   lower,
                   upper, color='orange', alpha=0.2)

  plt.xlim([0, num_steps+num_steps_forecast])
  ymin, ymax = min(np.min(forecast_samples), np.min(data)), max(np.max(forecast_samples), np.max(data))
  yrange = ymax-ymin
  plt.title("{}".format('Observed time series with ' + str(num_steps_forecast) + ' Day Forecast'))
  plt.xlabel('Day')
  plt.ylabel('Daily Sample Size')
  plt.legend()
plot_forecast_helper(observed_counts, forecast_samples, CI=80)

png

VI inferencia

Variacional inferencia puede ser problemático cuando inferir una serie de tiempo completo, al igual que nuestros conteos aproximados (en lugar de sólo los parámetros de una serie de tiempo, como en los modelos STS estándar). La suposición estándar de que las variables tienen posteriores independientes es bastante errónea, ya que cada paso de tiempo está correlacionado con sus vecinos, lo que puede llevar a subestimar la incertidumbre. Por esta razón, HMC puede ser una mejor opción para la inferencia aproximada en series de tiempo completo. Sin embargo, VI puede ser bastante más rápido y puede ser útil para la creación de prototipos de modelos o en casos en los que se pueda demostrar empíricamente que su rendimiento es "suficientemente bueno".

Para ajustar nuestro modelo con VI, simplemente construimos y optimizamos un posterior sustituto:

surrogate_posterior = tfp.experimental.vi.build_factored_surrogate_posterior(
    event_shape=pinned_model.event_shape,
    bijector=constraining_bijector)
# Allow external control of optimization to reduce test runtimes.
num_variational_steps = 1000 # @param { isTemplate: true}
num_variational_steps = int(num_variational_steps)

t0 = time.time()
losses = tfp.vi.fit_surrogate_posterior(pinned_model.unnormalized_log_prob,
                                        surrogate_posterior,
                                        optimizer=tf.optimizers.Adam(0.1),
                                        num_steps=num_variational_steps)
t1 = time.time()
print("Inference ran in {:.2f}s.".format(t1-t0))
Inference ran in 11.37s.
plt.plot(losses)
plt.title("Variational loss")
_ = plt.xlabel("Steps")

png

posterior_samples = surrogate_posterior.sample(50)
param_samples = posterior_samples[:-1]
unconstrained_rate_samples = posterior_samples[-1][..., 0]
rate_samples = positive_bijector.forward(unconstrained_rate_samples)

plt.figure(figsize=(10, 4))
mean_lower, mean_upper = np.percentile(rate_samples, [10, 90], axis=0)
pred_lower, pred_upper = np.percentile(
    np.random.poisson(rate_samples), [10, 90], axis=0)

_ = plt.plot(observed_counts, color='blue', ls='--', marker='o',
             label='observed', alpha=0.7)
_ = plt.plot(np.mean(rate_samples, axis=0), label='rate', color='green',
             ls='dashed', lw=2, alpha=0.7)
_ = plt.fill_between(
    np.arange(0, 30), mean_lower, mean_upper, color='green', alpha=0.2)
_ = plt.fill_between(np.arange(0, 30), pred_lower, pred_upper, color='grey',
    label='counts', alpha=0.2)
plt.xlabel('Day')
plt.ylabel('Daily Sample Size')
plt.title('Posterior Mean')
plt.legend()
<matplotlib.legend.Legend at 0x7f93ff4735c0>

png

forecast_samples, rate_samples = sample_forecasted_counts(
   sts_model,
   posterior_latent_rates=unconstrained_rate_samples,
   posterior_params=param_samples,
   # Days to forecast:
   num_steps_forecast=30,
   num_sampled_forecasts=100)
forecast_samples = np.squeeze(forecast_samples)
plot_forecast_helper(observed_counts, forecast_samples, CI=80)

png