Halaman ini diterjemahkan oleh Cloud Translation API.
Switch to English

Probabilitas TensorFlow adalah library untuk penalaran probabilistik dan analisis statistik.

import tensorflow as tf
import tensorflow_probability as tfp

# Pretend to load synthetic data set.
features = tfp.distributions.Normal(loc=0., scale=1.).sample(int(100e3))
labels = tfp.distributions.Bernoulli(logits=1.618 * features).sample()

# Specify model.
model = tfp.glm.Bernoulli()

# Fit model given data.
coeffs, linear_response, is_converged, num_iter = tfp.glm.fit(
    model_matrix=features[:, tf.newaxis],
    response=tf.cast(labels, dtype=tf.float32),
    model=model)
# ==> coeffs is approximately [1.618] (We're golden!)
Jalankan di Notebook
TensorFlow Probability (TFP) adalah library Python yang dibangun di atas TensorFlow yang memudahkan penggabungan model probabilistik dan deep learning pada hardware modern (TPU, GPU). Ini untuk ilmuwan data, ahli statistik, peneliti ML, dan praktisi yang ingin menyandikan pengetahuan domain untuk memahami data dan membuat prediksi. TFP meliputi:
  • Berbagai pilihan distribusi probabilitas dan bijector.
  • Alat untuk membangun model probabilistik yang dalam, termasuk lapisan probabilistik dan abstraksi `JointDistribution`.
  • Variasi inferensi dan rantai Markov Monte Carlo.
  • Pengoptimal seperti Nelder-Mead, BFGS, dan SGLD.
Karena TFP mewarisi manfaat TensorFlow, Anda dapat membuat, menyesuaikan, dan men-deploy model menggunakan satu bahasa selama siklus proses eksplorasi dan produksi model. TFP adalah open source dan tersedia di GitHub . Untuk memulai, lihat Panduan Probabilitas TensorFlow .