सहायता Kaggle पर TensorFlow साथ ग्रेट बैरियर रीफ की रक्षा चैलेंज में शामिल हों

टेंसरफ़्लो :: ऑप्स :: MatrixSetDiagV2

#include <array_ops.h>

नए बैच वाले विकर्ण मूल्यों के साथ एक बैच मैट्रिक्स मैट्रिक्स को लौटाता है।

सारांश

यह देखते हुए input और diagonal , इस आपरेशन में एक ही आकार और मूल्यों के रूप में के साथ एक टेन्सर रिटर्न input , अंतरतम मैट्रिक्स की निर्दिष्ट विकर्ण के लिए छोड़कर। ये diagonal में मूल्यों द्वारा अधिलेखित हो जाएंगे।

input में r+1 आयाम [I, J, ..., L, M, N] । जब k स्केलर या k[0] == k[1] , तो diagonal के r आयाम हैं [I, J, ..., L, max_diag_len] । अन्यथा, इसमें r+1 आयाम [I, J, ..., L, num_diags, max_diag_len]num_diags विकर्णों की संख्या है, num_diags = k[1] - k[0] + 1max_diag_len रेंज में सबसे लंबा विकर्ण है [k[0], k[1]] , max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))

आउटपुट आयाम [I, J, ..., L, M, N] साथ रैंक k+1 का एक टेंसर है। यदि k स्केलर या k[0] == k[1] :

output[i, j, ..., l, m, n]
  = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
    output[i, j, ..., l, m, n]             ; otherwise

अन्यथा,

output[i, j, ..., l, m, n]
  = diagonal[i, j, ..., l, k[1]-d, n-max(d, 0)] ; if d_lower <= d <= d_upper
    input[i, j, ..., l, m, n]                   ; otherwise
जहाँ d = n - m

उदाहरण के लिए:

# The main diagonal.
input = np.array([[[7, 7, 7, 7],              # Input shape: (2, 3, 4)
                   [7, 7, 7, 7],
                   [7, 7, 7, 7]],
                  [[7, 7, 7, 7],
                   [7, 7, 7, 7],
                   [7, 7, 7, 7]]])
diagonal = np.array([[1, 2, 3],               # Diagonal shape: (2, 3)
                     [4, 5, 6]])
tf.matrix_diag(diagonal) ==> [[[1, 7, 7, 7],  # Output shape: (2, 3, 4)
                               [7, 2, 7, 7],
                               [7, 7, 3, 7]],
                              [[4, 7, 7, 7],
                               [7, 5, 7, 7],
                               [7, 7, 6, 7]]]

# A superdiagonal (per batch).
tf.matrix_diag(diagonal, k = 1)
  ==> [[[7, 1, 7, 7],  # Output shape: (2, 3, 4)
        [7, 7, 2, 7],
        [7, 7, 7, 3]],
       [[7, 4, 7, 7],
        [7, 7, 5, 7],
        [7, 7, 7, 6]]]

# A band of diagonals.
diagonals = np.array([[[1, 2, 3],  # Diagonal shape: (2, 2, 3)
                       [4, 5, 0]],
                      [[6, 1, 2],
                       [3, 4, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
  ==> [[[1, 7, 7, 7],  # Output shape: (2, 3, 4)
        [4, 2, 7, 7],
        [0, 5, 3, 7]],
       [[6, 7, 7, 7],
        [3, 1, 7, 7],
        [7, 4, 2, 7]]]

  

Arguments:

  • scope: A Scope object
  • input: Rank r+1, where r >= 1.
  • diagonal: Rank r when k is an integer or k[0] == k[1]. Otherwise, it has rank r+1. k >= 1.
  • k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. k can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0] must not be larger than k[1].

Returns:

  • Output: Rank r+1, with output.shape = input.shape.

Constructors and Destructors

MatrixSetDiagV2(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input diagonal, ::tensorflow::Input k)

Public attributes

operation
output

Public functions

node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const

Public attributes

operation

Operation operation

उत्पादन

::tensorflow::Output output

सार्वजनिक कार्य

MatrixSetDiagV2

 MatrixSetDiagV2(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input input,
  ::tensorflow::Input diagonal,
  ::tensorflow::Input k
)

नोड

::tensorflow::Node * node() const 

ऑपरेटर :: टेंसरफ़्लो :: इनपुट

 operator::tensorflow::Input() const 
है

ऑपरेटर :: टेंसरफ़्लो :: आउटपुट

 operator::tensorflow::Output() const