Advertencia: esta API está obsoleta y se eliminará en una versión futura de TensorFlow una vez que el reemplazo sea estable.
ExperimentalPrivateThreadPoolDataset
Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
Crea un conjunto de datos que utiliza un grupo de subprocesos personalizado para calcular `input_dataset`.
Métodos heredados
De la clase java.lang.Object booleano | es igual (Objeto arg0) |
Clase final<?> | obtenerclase () |
En t | código hash () |
vacío final | notificar () |
vacío final | notificar a todos () |
Cadena | Encadenar () |
vacío final | esperar (arg0 largo, int arg1) |
vacío final | espera (largo arg0) |
vacío final | esperar () |
Métodos públicos
Salida pública <Objeto> comoSalida ()
Devuelve el identificador simbólico de un tensor.
Las entradas a las operaciones de TensorFlow son salidas de otra operación de TensorFlow. Este método se utiliza para obtener un identificador simbólico que representa el cálculo de la entrada.
Método de fábrica para crear una clase que envuelve una nueva operación ExperimentalPrivateThreadPoolDataset.
Parámetros
alcance | alcance actual |
---|
número de hilos | Identifica el número de subprocesos que se utilizarán para el grupo de subprocesos privado. |
---|
Devoluciones
- una nueva instancia de ExperimentalPrivateThreadPoolDataset
Salida pública <?> identificador ()
A menos que se indique lo contrario, el contenido de esta página está sujeto a la licencia Reconocimiento 4.0 de Creative Commons y las muestras de código están sujetas a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio web de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2023-12-01 (UTC).
[{
"type": "thumb-down",
"id": "missingTheInformationINeed",
"label":"Me falta la información que necesito"
},{
"type": "thumb-down",
"id": "tooComplicatedTooManySteps",
"label":"Es demasiado complicado o hay demasiados pasos"
},{
"type": "thumb-down",
"id": "outOfDate",
"label":"Está obsoleto"
},{
"type": "thumb-down",
"id": "translationIssue",
"label":"Problema de traducción"
},{
"type": "thumb-down",
"id": "samplesCodeIssue",
"label":"Problema de muestras o código"
},{
"type": "thumb-down",
"id": "otherDown",
"label":"Otro"
}]
[{
"type": "thumb-up",
"id": "easyToUnderstand",
"label":"Es fácil de entender"
},{
"type": "thumb-up",
"id": "solvedMyProblem",
"label":"Me ofreció una solución al problema"
},{
"type": "thumb-up",
"id": "otherUp",
"label":"Otro"
}]
{"lastModified": "\u00daltima actualizaci\u00f3n: 2023-12-01 (UTC)."}
[[["Es fácil de entender","easyToUnderstand","thumb-up"],["Me ofreció una solución al problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Me falta la información que necesito","missingTheInformationINeed","thumb-down"],["Es demasiado complicado o hay demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Está obsoleto","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema de muestras o código","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2023-12-01 (UTC)."],[],[]]