Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

tfds.core.SplitDict

View source on GitHub

Split info object.

tfds.core.SplitDict(
    dataset_name
)

Attributes:

  • total_num_examples: Return the total number of examples.

Methods

__contains__

__contains__(
    key
)

__eq__

__eq__(
    value
)

__ge__

__ge__(
    value
)

__getitem__

View source

__getitem__(
    key
)

x.getitem(y) <==> x[y]

__gt__

__gt__(
    value
)

__iter__

__iter__()

__le__

__le__(
    value
)

__len__

__len__()

__lt__

__lt__(
    value
)

__ne__

__ne__(
    value
)

add

View source

add(
    split_info
)

Add the split info.

copy

View source

copy()

D.copy() -> a shallow copy of D

from_proto

View source

@classmethod
from_proto(
    cls, dataset_name, repeated_split_infos
)

Returns a new SplitDict initialized from the repeated_split_infos.

fromkeys

fromkeys(
    type, iterable, value
)

to_proto

View source

to_proto()

Returns a list of SplitInfo protos that we have.

update

View source

update(
    other
)

D.update([E, ]**F) -> None. Update D from dict/iterable E and F. If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]