![]() |
FeatureConnector
for integer class labels.
Inherits From: Tensor
, FeatureConnector
tfds.features.ClassLabel(
*, num_classes=None, names=None, names_file=None
)
Args | |
---|---|
num_classes
|
int , number of classes. All labels must be < num_classes.
|
names
|
list<str> , string names for the integer classes. The
order in which the names are provided is kept.
|
names_file
|
str , path to a file with names for the integer
classes, one per line.
|
Attributes | |
---|---|
dtype
|
Return the dtype (or dict of dtype) of this FeatureConnector. |
names
|
|
num_classes
|
|
shape
|
Return the shape (or dict of shape) of this FeatureConnector. |
Methods
decode_batch_example
decode_batch_example(
example_data
)
See base class for details.
decode_example
decode_example(
tfexample_data
)
Decode the feature dict to TF compatible input.
Args | |
---|---|
tfexample_data
|
Data or dictionary of data, as read by the tf-example
reader. It correspond to the tf.Tensor() (or dict of tf.Tensor() )
extracted from the tf.train.Example , matching the info defined in
get_serialized_info() .
|
Returns | |
---|---|
tensor_data
|
Tensor or dictionary of tensor, output of the tf.data.Dataset object |
decode_ragged_example
decode_ragged_example(
example_data
)
See base class for details.
encode_example
encode_example(
example_data
)
See base class for details.
from_config
@classmethod
from_config( root_dir: str ) -> "FeatureConnector"
Reconstructs the FeatureConnector from the config file.
Usage:
features = FeatureConnector.from_config('path/to/features.json')
Args | |
---|---|
root_dir
|
Directory containing to the features.json file. |
Returns | |
---|---|
The reconstructed feature instance. |
from_json
@classmethod
from_json( value:
tfds.typing.Json
) -> "FeatureConnector"
FeatureConnector factory.
This function should be called from the tfds.features.FeatureConnector
base class. Subclass should implement the from_json_content
.
Example:
feature = tfds.features.FeatureConnector.from_json(
{'type': 'Image', 'content': {'shape': [32, 32, 3], 'dtype': 'uint8'} }
)
assert isinstance(feature, tfds.features.Image)
Args | |
---|---|
value
|
dict(type=, content=) containing the feature to restore.
Match dict returned by to_json .
|
Returns | |
---|---|
The reconstructed FeatureConnector. |
from_json_content
@classmethod
from_json_content( value:
tfds.typing.Json
) -> "ClassLabel"
FeatureConnector factory (to overwrite).
Subclasses should overwritte this method. importing the feature connector from the config.
This function should not be called directly. FeatureConnector.from_json
should be called instead.
This function See existing FeatureConnector for example of implementation.
Args | |
---|---|
value
|
FeatureConnector information. Match the dict returned by
to_json_content .
|
Returns | |
---|---|
The reconstructed FeatureConnector. |
get_serialized_info
get_serialized_info()
Return the shape/dtype of features after encoding (for the adapter).
The FileAdapter
then use those information to write data on disk.
This function indicates how this feature is encoded on file internally. The DatasetBuilder are written on disk as tf.train.Example proto.
Ex:
return {
'image': tfds.features.TensorInfo(shape=(None,), dtype=tf.uint8),
'height': tfds.features.TensorInfo(shape=(), dtype=tf.int32),
'width': tfds.features.TensorInfo(shape=(), dtype=tf.int32),
}
FeatureConnector which are not containers should return the feature proto directly:
return tfds.features.TensorInfo(shape=(64, 64), tf.uint8)
If not defined, the retuned values are automatically deduced from the
get_tensor_info
function.
Returns | |
---|---|
features
|
Either a dict of feature proto object, or a feature proto object |
get_tensor_info
get_tensor_info()
See base class for details.
int2str
int2str(
int_value
)
Conversion integer => class name string.
load_metadata
load_metadata(
data_dir, feature_name=None
)
See base class for details.
repr_html
repr_html(
ex: int
) -> str
Class labels are displayed with their name.
repr_html_batch
repr_html_batch(
ex: np.ndarray
) -> str
Returns the HTML str representation of the object (Sequence).
repr_html_ragged
repr_html_ragged(
ex: np.ndarray
) -> str
Returns the HTML str representation of the object (Nested sequence).
save_config
save_config(
root_dir: str
) -> None
Exports the FeatureConnector
to a file.
Args | |
---|---|
root_dir
|
path/to/dir containing the features.json
|
save_metadata
save_metadata(
data_dir, feature_name=None
)
See base class for details.
str2int
str2int(
str_value
)
Conversion class name string => integer.
to_json
to_json() -> tfds.typing.Json
Exports the FeatureConnector to Json.
Each feature is serialized as a dict(type=..., content=...)
.
type
: The cannonical name of the feature (module.FeatureName
).content
: is specific to each feature connector and defined into_json_content
. Can contain nested sub-features (like fortfds.features.FeaturesDict
andtfds.features.Sequence
).
For example:
tfds.features.FeaturesDict({
'input': tfds.features.Image(),
'target': tfds.features.ClassLabel(num_classes=10),
})
Is serialized as:
{
"type": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"content": {
"input": {
"type": "tensorflow_datasets.core.features.image_feature.Image",
"content": {
"shape": [null, null, 3],
"dtype": "uint8",
"encoding_format": "png"
}
},
"target": {
"type": "tensorflow_datasets.core.features.class_label_feature.ClassLabel",
"num_classes": 10
}
}
}
Returns | |
---|---|
A dict(type=, content=) . Will be forwarded to
from_json when reconstructing the feature.
|
to_json_content
to_json_content() -> tfds.typing.Json
FeatureConnector factory (to overwrite).
This function should be overwritten by the subclass to allow re-importing the feature connector from the config. See existing FeatureConnector for example of implementation.
Returns | |
---|---|
Dict containing the FeatureConnector metadata. Will be forwarded to
from_json_content when reconstructing the feature.
|