![]() |
FeatureConnector
for integer class labels.
Inherits From: Tensor
, FeatureConnector
tfds.features.ClassLabel(
*, num_classes=None, names=None, names_file=None
)
Args | |
---|---|
num_classes
|
int , number of classes. All labels must be < num_classes.
|
names
|
list<str> , string names for the integer classes. The order in
which the names are provided is kept.
|
names_file
|
str , path to a file with names for the integer classes, one
per line.
|
Attributes | |
---|---|
dtype
|
Return the dtype (or dict of dtype) of this FeatureConnector. |
names
|
|
num_classes
|
|
numpy_dtype
|
|
shape
|
Return the shape (or dict of shape) of this FeatureConnector. |
Methods
cls_from_name
@classmethod
cls_from_name( python_class_name: str ) -> Type['FeatureConnector']
Returns the feature class for the given Python class.
decode_batch_example
decode_batch_example(
example_data
)
See base class for details.
decode_example
decode_example(
tfexample_data
)
See base class for details.
decode_ragged_example
decode_ragged_example(
example_data
)
See base class for details.
encode_example
encode_example(
example_data
)
See base class for details.
from_config
@classmethod
from_config( root_dir: str ) -> 'FeatureConnector'
Reconstructs the FeatureConnector from the config file.
Usage:
features = FeatureConnector.from_config('path/to/features.json')
Args | |
---|---|
root_dir
|
Directory containing to the features.json file. |
Returns | |
---|---|
The reconstructed feature instance. |
from_json
@classmethod
from_json( value:
tfds.typing.Json
) -> 'FeatureConnector'
FeatureConnector factory.
This function should be called from the tfds.features.FeatureConnector
base class. Subclass should implement the from_json_content
.
Example:
feature = tfds.features.FeatureConnector.from_json(
{'type': 'Image', 'content': {'shape': [32, 32, 3], 'dtype': 'uint8'} }
)
assert isinstance(feature, tfds.features.Image)
Args | |
---|---|
value
|
dict(type=, content=) containing the feature to restore. Match
dict returned by to_json .
|
Returns | |
---|---|
The reconstructed FeatureConnector. |
from_json_content
@classmethod
from_json_content( value: Union[
tfds.typing.Json
, feature_pb2.ClassLabel] ) -> 'ClassLabel'
FeatureConnector factory (to overwrite).
Subclasses should overwrite this method. This method is used when importing the feature connector from the config.
This function should not be called directly. FeatureConnector.from_json
should be called instead.
See existing FeatureConnectors for implementation examples.
Args | |
---|---|
value
|
FeatureConnector information represented as either Json or a
Feature proto. The content must match what is returned by
to_json_content .
|
Returns | |
---|---|
The reconstructed FeatureConnector. |
from_proto
@classmethod
from_proto( feature: feature_pb2.Feature ) -> T
get_serialized_info
get_serialized_info()
See base class for details.
get_tensor_info
get_tensor_info() -> tfds.features.TensorInfo
See base class for details.
int2str
int2str(
int_value
)
Conversion integer => class name string.
load_metadata
load_metadata(
data_dir, feature_name=None
)
See base class for details.
repr_html
repr_html(
ex: int
) -> str
Class labels are displayed with their name.
repr_html_batch
repr_html_batch(
ex: np.ndarray
) -> str
Returns the HTML str representation of the object (Sequence).
repr_html_ragged
repr_html_ragged(
ex: np.ndarray
) -> str
Returns the HTML str representation of the object (Nested sequence).
save_config
save_config(
root_dir: str
) -> None
Exports the FeatureConnector
to a file.
Args | |
---|---|
root_dir
|
path/to/dir containing the features.json
|
save_metadata
save_metadata(
data_dir, feature_name=None
)
See base class for details.
str2int
str2int(
str_value
)
Conversion class name string => integer.
to_json
to_json() -> tfds.typing.Json
Exports the FeatureConnector to Json.
Each feature is serialized as a dict(type=..., content=...)
.
type
: The cannonical name of the feature (module.FeatureName
).content
: is specific to each feature connector and defined into_json_content
. Can contain nested sub-features (like fortfds.features.FeaturesDict
andtfds.features.Sequence
).
For example:
tfds.features.FeaturesDict({
'input': tfds.features.Image(),
'target': tfds.features.ClassLabel(num_classes=10),
})
Is serialized as:
{
"type": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"content": {
"input": {
"type": "tensorflow_datasets.core.features.image_feature.Image",
"content": {
"shape": [null, null, 3],
"dtype": "uint8",
"encoding_format": "png"
}
},
"target": {
"type":
"tensorflow_datasets.core.features.class_label_feature.ClassLabel",
"content": {
"num_classes": 10
}
}
}
}
Returns | |
---|---|
A dict(type=, content=) . Will be forwarded to from_json when
reconstructing the feature.
|
to_json_content
to_json_content() -> feature_pb2.ClassLabel
FeatureConnector factory (to overwrite).
This function should be overwritten by the subclass to allow re-importing the feature connector from the config. See existing FeatureConnector for example of implementation.
Returns | |
---|---|
The FeatureConnector metadata in either a dict, or a Feature proto. This
output is used in from_json_content when reconstructing the feature.
|
to_proto
to_proto() -> feature_pb2.Feature
Exports the FeatureConnector to the Feature proto.
For features that have a specific schema defined in a proto, this function needs to be overriden. If there's no specific proto schema, then the feature will be represented using JSON.
Returns | |
---|---|
The feature proto describing this feature. |
Class Variables | |
---|---|
ALIASES |
['tensorflow_datasets.core.features.feature.Tensor']
|