Google I / O가 5 월 18 ~ 20 일에 돌아옵니다! 공간을 예약하고 일정을 짜세요 지금 등록하세요


Visualize images (and labels) from an image classification dataset.

Used in the notebooks

Used in the tutorials

This function is for interactive use (Colab, Jupyter). It displays and return a plot of (rows*columns) images from a


ds, ds_info = tfds.load('cifar10', split='train', with_info=True)
fig = tfds.show_examples(ds, ds_info)

ds The object to visualize. Examples should not be batched. Examples will be consumed in order until (rows * cols) are read or the dataset is consumed.
ds_info The dataset info object to which extract the label and features info. Available either through tfds.load('mnist', with_info=True) or tfds.builder('mnist').info
**options_kwargs Additional display options, specific to the dataset type to visualize. Are forwarded to See the tfds.visualization for a list of available visualizers.

fig The matplotlib.Figure object