Ayuda a proteger la Gran Barrera de Coral con TensorFlow en Kaggle Únete Challenge

Mejor rendimiento con tf.function

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHubDescargar cuaderno

En TensorFlow 2, la ejecución ansiosa está activada de forma predeterminada. La interfaz de usuario es intuitiva y flexible (ejecutar operaciones puntuales es mucho más fácil y rápido), pero esto puede producirse a expensas del rendimiento y la capacidad de implementación.

Puede utilizar tf.function para hacer gráficos de sus programas. Es una herramienta de transformación que crea gráficos de flujo de datos independientes de Python a partir de su código Python. Esto le ayudará a crear modelos performant y portátiles, y es necesario para utilizar SavedModel .

Esta guía le ayudará a conceptualizar cómo tf.function funciona bajo el capó, por lo que puede utilizarla de manera eficaz.

Las principales conclusiones y recomendaciones son:

  • Depuración en modo ansiosos, a continuación, decorar con @tf.function .
  • No confíe en los efectos secundarios de Python, como la mutación de objetos o las adiciones de listas.
  • tf.function funciona mejor con operaciones TensorFlow; Las llamadas a NumPy y Python se convierten en constantes.

Configuración

import tensorflow as tf

Defina una función auxiliar para demostrar los tipos de errores que puede encontrar:

import traceback
import contextlib

# Some helper code to demonstrate the kinds of errors you might encounter.
@contextlib.contextmanager
def assert_raises(error_class):
  try:
    yield
  except error_class as e:
    print('Caught expected exception \n  {}:'.format(error_class))
    traceback.print_exc(limit=2)
  except Exception as e:
    raise e
  else:
    raise Exception('Expected {} to be raised but no error was raised!'.format(
        error_class))

Lo esencial

Uso

Una Function se define (por ejemplo, mediante la aplicación de la @tf.function decorador) es igual que una operación central TensorFlow: Se pueden ejecutar con avidez; puedes calcular gradientes; etcétera.

@tf.function  # The decorator converts `add` into a `Function`.
def add(a, b):
  return a + b

add(tf.ones([2, 2]), tf.ones([2, 2]))  #  [[2., 2.], [2., 2.]]
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[2., 2.],
       [2., 2.]], dtype=float32)>
v = tf.Variable(1.0)
with tf.GradientTape() as tape:
  result = add(v, 1.0)
tape.gradient(result, v)
<tf.Tensor: shape=(), dtype=float32, numpy=1.0>

Puede utilizar Function s dentro de otra Function s.

@tf.function
def dense_layer(x, w, b):
  return add(tf.matmul(x, w), b)

dense_layer(tf.ones([3, 2]), tf.ones([2, 2]), tf.ones([2]))
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[3., 3.],
       [3., 3.],
       [3., 3.]], dtype=float32)>

Function s puede ser más rápido que el código ansiosos, especialmente para los gráficos con muchas operaciones pequeñas. Pero para gráficos con algunas operaciones costosas (como convoluciones), es posible que no vea mucha aceleración.

import timeit
conv_layer = tf.keras.layers.Conv2D(100, 3)

@tf.function
def conv_fn(image):
  return conv_layer(image)

image = tf.zeros([1, 200, 200, 100])
# Warm up
conv_layer(image); conv_fn(image)
print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10))
print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10))
print("Note how there's not much difference in performance for convolutions")
Eager conv: 0.006058974999177735
Function conv: 0.005791576000774512
Note how there's not much difference in performance for convolutions

Rastreo

En esta sección se expone la forma en Function funciona bajo el capó, incluyendo detalles de implementación que pueden cambiar en el futuro. Sin embargo, una vez que entienda por qué y al trazar sucede, es mucho más fácil de usar tf.function efectiva!

¿Qué es "rastreo"?

Una Function se ejecuta el programa en un gráfico TensorFlow . Sin embargo, un tf.Graph no puede representar a todas las cosas que le gustaría escribir en un programa TensorFlow ansiosos. Por ejemplo, Python soporta polimorfismo, pero tf.Graph exige a sus entradas de tener un tipo de datos especificado y dimensión. O puede realizar tareas secundarias como leer argumentos en la línea de comandos, generar un error o trabajar con un objeto Python más complejo; ninguna de estas cosas puede ejecutar en un tf.Graph .

Function puente entre esta brecha mediante la separación de su código en dos etapas:

1) En la primera etapa, se hace referencia como "rastreo", Function crea un nuevo tf.Graph . Código Python funciona normalmente, pero se difieren todas las operaciones TensorFlow (como la adición de dos tensores): son capturados por el tf.Graph y no se ejecutan.

2) En la segunda etapa, un tf.Graph que contiene todo lo que se aplaza en la primera etapa se ejecuta. Esta etapa es mucho más rápida que la etapa de rastreo.

En función de sus entradas, Function no se ejecute siempre la primera etapa cuando se le llama. Ver "Reglas de rastreo" de abajo para obtener una mejor idea de cómo se hace esa determinación. Saltarse la primera etapa y solo ejecutar la segunda etapa es lo que le brinda el alto rendimiento de TensorFlow.

Cuando Function se decide a trazar, la etapa de rastreo es seguida inmediatamente por la segunda etapa, por lo que llamar a la Function tanto crea y dirige el tf.Graph . Más adelante se verá cómo se puede ejecutar sólo la etapa de rastreo con get_concrete_function .

Cuando se pasa argumentos de diferentes tipos en una Function , ambas etapas se ejecutan:

@tf.function
def double(a):
  print("Tracing with", a)
  return a + a

print(double(tf.constant(1)))
print()
print(double(tf.constant(1.1)))
print()
print(double(tf.constant("a")))
print()
Tracing with Tensor("a:0", shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)

Tracing with Tensor("a:0", shape=(), dtype=float32)
tf.Tensor(2.2, shape=(), dtype=float32)

Tracing with Tensor("a:0", shape=(), dtype=string)
tf.Tensor(b'aa', shape=(), dtype=string)

Tenga en cuenta que si se llama repetidamente a una Function con el mismo tipo de argumento, TensorFlow saltará la etapa de seguimiento y la reutilización de un gráfico previamente trazado, como el gráfico generado sería idéntica.

# This doesn't print 'Tracing with ...'
print(double(tf.constant("b")))
tf.Tensor(b'bb', shape=(), dtype=string)

Puede utilizar pretty_printed_concrete_signatures() para ver todos los rastros disponibles:

print(double.pretty_printed_concrete_signatures())
double(a)
  Args:
    a: int32 Tensor, shape=()
  Returns:
    int32 Tensor, shape=()

double(a)
  Args:
    a: float32 Tensor, shape=()
  Returns:
    float32 Tensor, shape=()

double(a)
  Args:
    a: string Tensor, shape=()
  Returns:
    string Tensor, shape=()

Hasta el momento, se ha visto que tf.function crea un caché, la capa de distribución dinámica sobre gráfico de TensorFlow trazando la lógica. Para ser más específico sobre la terminología:

  • Un tf.Graph es la representación cruda, independiente del idioma, portátil de un cálculo TensorFlow.
  • Un ConcreteFunction se ajusta un tf.Graph .
  • Una Function gestiona una caché de ConcreteFunction s y recoge el más adecuado para sus entradas.
  • tf.function envuelve una función de Python, el retorno de una Function objeto.
  • Rastreo crea una tf.Graph y lo envuelve en un ConcreteFunction , también conocido como una huella.

Reglas de rastreo

Una Function determina si se debe utilizar nuevamente un trazado ConcreteFunction mediante el cálculo de una clave de caché de argumentos y kwargs de una entrada. Una clave de caché es una clave que identifica una ConcreteFunction basado en los argumentos de entrada y kwargs de la Function llamada, de acuerdo con las siguientes reglas (que puede cambiar):

  • La clave generada para un tf.Tensor es su forma y dtype.
  • La clave generada para un tf.Variable es un identificador de variable.
  • La clave generada para un Python primitiva (como int , float , str ) es su valor.
  • La clave generada para anidada dict s, list s, tuple s, namedtuple s, y attr s es la tupla aplanada de la hoja de teclas (véase nest.flatten ). (Como resultado de este aplanamiento, llamar a una función concreta con una estructura de anidamiento diferente a la utilizada durante el rastreo dará como resultado un TypeError).
  • Para todos los demás tipos de Python, la clave es única para el objeto. De esta manera, se rastrea una función o método de forma independiente para cada instancia con la que se llama.

Controlar el retroceso

Volviendo, que es cuando su Function crea más de una huella, ayuda a asegura que TensorFlow genera gráficos correctos para cada conjunto de entradas. Sin embargo, el rastreo es una operación costosa. Si su Function vuelve a trazar un nuevo gráfico para cada llamada, usted encontrará que sus ejecuta código más lentamente que si no utilizaron tf.function .

Para controlar el comportamiento de seguimiento, puede utilizar las siguientes técnicas:

  • Especificar input_signature en tf.function al límite de rastreo.
@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))
def next_collatz(x):
  print("Tracing with", x)
  return tf.where(x % 2 == 0, x // 2, 3 * x + 1)

print(next_collatz(tf.constant([1, 2])))
# You specified a 1-D tensor in the input signature, so this should fail.
with assert_raises(ValueError):
  next_collatz(tf.constant([[1, 2], [3, 4]]))

# You specified an int32 dtype in the input signature, so this should fail.
with assert_raises(ValueError):
  next_collatz(tf.constant([1.0, 2.0]))
Tracing with Tensor("x:0", shape=(None,), dtype=int32)
tf.Tensor([4 1], shape=(2,), dtype=int32)
Caught expected exception 
  <class 'ValueError'>:
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/1851403433.py", line 9, in <module>
    next_collatz(tf.constant([[1, 2], [3, 4]]))
ValueError: Python inputs incompatible with input_signature:
  inputs: (
    tf.Tensor(
[[1 2]
 [3 4]], shape=(2, 2), dtype=int32))
  input_signature: (
    TensorSpec(shape=(None,), dtype=tf.int32, name=None)).
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/1851403433.py", line 13, in <module>
    next_collatz(tf.constant([1.0, 2.0]))
ValueError: Python inputs incompatible with input_signature:
  inputs: (
    tf.Tensor([1. 2.], shape=(2,), dtype=float32))
  input_signature: (
    TensorSpec(shape=(None,), dtype=tf.int32, name=None)).
  • Especificar un [Ninguno] dimensión en tf.TensorSpec para permitir flexibilidad en la reutilización de traza.

    Desde TensorFlow coincide con tensores en función de su forma, utilizando un None dimensión como un comodín permitirá Function s a trazas de reutilización para la entrada de tamaño variable. De entrada de tamaño variable puede ocurrir si tiene secuencias de diferente longitud, o imágenes de diferentes tamaños para cada lote (Ver las transformador y el sueño profundo tutoriales por ejemplo).

@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))
def g(x):
  print('Tracing with', x)
  return x

# No retrace!
print(g(tf.constant([1, 2, 3])))
print(g(tf.constant([1, 2, 3, 4, 5])))
Tracing with Tensor("x:0", shape=(None,), dtype=int32)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor([1 2 3 4 5], shape=(5,), dtype=int32)
  • Transmita argumentos de Python a tensores para reducir el retroceso.

    A menudo, los argumentos de Python se utilizan para hiperparámetros de control y construcciones de gráfico - por ejemplo, num_layers=10 o training=True o nonlinearity='relu' . Entonces, si el argumento de Python cambia, tiene sentido que tenga que volver sobre el gráfico.

    Sin embargo, es posible que no se esté utilizando un argumento de Python para controlar la construcción del gráfico. En estos casos, un cambio en el valor de Python puede desencadenar un retroceso innecesario. Tomemos, por ejemplo, este ciclo de entrenamiento, que AutoGraph desenrollará dinámicamente. A pesar de las múltiples trazas, el gráfico generado es en realidad idéntico, por lo que no es necesario volver a rastrearlo.

def train_one_step():
  pass

@tf.function
def train(num_steps):
  print("Tracing with num_steps = ", num_steps)
  tf.print("Executing with num_steps = ", num_steps)
  for _ in tf.range(num_steps):
    train_one_step()

print("Retracing occurs for different Python arguments.")
train(num_steps=10)
train(num_steps=20)

print()
print("Traces are reused for Tensor arguments.")
train(num_steps=tf.constant(10))
train(num_steps=tf.constant(20))
Retracing occurs for different Python arguments.
Tracing with num_steps =  10
Executing with num_steps =  10
Tracing with num_steps =  20
Executing with num_steps =  20

Traces are reused for Tensor arguments.
Tracing with num_steps =  Tensor("num_steps:0", shape=(), dtype=int32)
Executing with num_steps =  10
Executing with num_steps =  20

Si necesita fuerza de calco, crear una nueva Function . Separados Function objetos no se garantizan a las trazas de las acciones.

def f():
  print('Tracing!')
  tf.print('Executing')

tf.function(f)()
tf.function(f)()
Tracing!
Executing
Tracing!
Executing

Obtener funciones concretas

Cada vez que se rastrea una función, se crea una nueva función concreta. Se puede obtener directamente una función concreta, mediante el uso de get_concrete_function .

print("Obtaining concrete trace")
double_strings = double.get_concrete_function(tf.constant("a"))
print("Executing traced function")
print(double_strings(tf.constant("a")))
print(double_strings(a=tf.constant("b")))
Obtaining concrete trace
Executing traced function
tf.Tensor(b'aa', shape=(), dtype=string)
tf.Tensor(b'bb', shape=(), dtype=string)
# You can also call get_concrete_function on an InputSpec
double_strings_from_inputspec = double.get_concrete_function(tf.TensorSpec(shape=[], dtype=tf.string))
print(double_strings_from_inputspec(tf.constant("c")))
tf.Tensor(b'cc', shape=(), dtype=string)

Impresión de un ConcreteFunction muestra un resumen de sus argumentos de entrada (con tipos) y su tipo de salida.

print(double_strings)
ConcreteFunction double(a)
  Args:
    a: string Tensor, shape=()
  Returns:
    string Tensor, shape=()

También puede recuperar directamente la firma de una función concreta.

print(double_strings.structured_input_signature)
print(double_strings.structured_outputs)
((TensorSpec(shape=(), dtype=tf.string, name='a'),), {})
Tensor("Identity:0", shape=(), dtype=string)

El uso de una traza concreta con tipos incompatibles arrojará un error

with assert_raises(tf.errors.InvalidArgumentError):
  double_strings(tf.constant(1))
Caught expected exception 
  <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3196284684.py", line 2, in <module>
    double_strings(tf.constant(1))
tensorflow.python.framework.errors_impl.InvalidArgumentError: cannot compute __inference_double_162 as input #0(zero-based) was expected to be a string tensor but is a int32 tensor [Op:__inference_double_162]

Puede notar que los argumentos de Python reciben un tratamiento especial en la firma de entrada de una función concreta. Antes de TensorFlow 2.3, los argumentos de Python simplemente se eliminaban de la firma de la función concreta. A partir de TensorFlow 2.3, los argumentos de Python permanecen en la firma, pero están limitados a tomar el valor establecido durante el seguimiento.

@tf.function
def pow(a, b):
  return a ** b

square = pow.get_concrete_function(a=tf.TensorSpec(None, tf.float32), b=2)
print(square)
ConcreteFunction pow(a, b=2)
  Args:
    a: float32 Tensor, shape=<unknown>
  Returns:
    float32 Tensor, shape=<unknown>
assert square(tf.constant(10.0)) == 100

with assert_raises(TypeError):
  square(tf.constant(10.0), b=3)
Caught expected exception 
  <class 'TypeError'>:
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 1721, in _call_impl
    cancellation_manager)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 1765, in _call_with_flat_signature
    raise TypeError(f"{self._flat_signature_summary()} got unexpected "
TypeError: pow(a) got unexpected keyword arguments: b.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/2310937119.py", line 4, in <module>
    square(tf.constant(10.0), b=3)
TypeError: ConcreteFunction pow(a, b) was constructed with int value 2 in b, but was called with int value 3.

Obtención de gráficos

Cada función concreta es exigible una envoltura alrededor de un tf.Graph . A pesar de la recuperación de la actual tf.Graph objeto no es algo que va normalmente tiene que hacer, puede obtener fácilmente desde cualquier función concreta.

graph = double_strings.graph
for node in graph.as_graph_def().node:
  print(f'{node.input} -> {node.name}')
[] -> a
['a', 'a'] -> add
['add'] -> Identity

Depuración

En general, el código de depuración es más fácil en el modo de ganas que en el interior tf.function . Debe asegurarse de que el código se ejecuta en modo ansiosos sin errores antes de decorar con tf.function . Para ayudar en el proceso de depuración, puede llamar tf.config.run_functions_eagerly(True) a nivel mundial deshabilitar y rehabilitar tf.function .

Cuando seguimiento de problemas que aparecen sólo dentro tf.function , he aquí algunos consejos:

  • Plain Old Python print llamadas sólo se ejecutan durante el trazado, lo que ayuda a localizar cuando su función obtiene la (re) trazada.
  • tf.print llamadas se ejecutará cada vez, y pueden ayudar a localizar a los valores intermedios durante la ejecución.
  • tf.debugging.enable_check_numerics es una manera fácil de localizar dónde se crean NaNs e Inf.
  • pdb (el depurador de Python ) puede ayudar a entender lo que está pasando durante el trazado. (Advertencia: pdb le dejará en el código fuente AutoGraph transformadas.)

Transformaciones de AutoGraph

AutoGraph es una biblioteca que está activada de forma predeterminada en tf.function , y transforma un subconjunto de Python código ansiosos en operaciones TensorFlow compatible con gráficos. Esto incluye el control de flujo como if , for , while .

Ops TensorFlow como tf.cond y tf.while_loop siguen trabajando, pero el flujo de control es a menudo más fácil de escribir y entender cuando está escrito en Python.

# A simple loop

@tf.function
def f(x):
  while tf.reduce_sum(x) > 1:
    tf.print(x)
    x = tf.tanh(x)
  return x

f(tf.random.uniform([5]))
[0.666458249 0.713946581 0.723879576 0.330758929 0.184087753]
[0.582645297 0.613145649 0.619306684 0.319202513 0.182036072]
[0.524585426 0.546337605 0.550645113 0.308785647 0.18005164]
[0.481231302 0.497770309 0.501003504 0.299331933 0.178130865]
[0.447229207 0.460361809 0.462906033 0.290701121 0.176270396]
[0.419618756 0.430379033 0.432449728 0.282779962 0.174467146]
[0.396609187 0.405638 0.407366514 0.275476 0.172718227]
[0.377043903 0.384762734 0.386234313 0.268712848 0.17102097]
[0.360137492 0.366836458 0.368109286 0.262426734 0.169372901]
[0.345335096 0.351221472 0.352336824 0.256563932 0.167771652]
[0.332231969 0.337458342 0.338446289 0.251078814 0.166215062]
[0.320524871 0.325206399 0.326089561 0.24593246 0.164701089]
[0.309981436 0.314206958 0.31500268 0.241091311 0.163227797]
[0.300420195 0.304259449 0.304981351 0.236526251 0.161793426]
[0.291697085 0.295205742 0.295864582 0.232211992 0.160396278]
[0.283696055 0.286919087 0.287523568 0.228126258 0.159034774]
[0.276322395 0.279296666 0.27985391 0.224249557 0.157707423]
[0.269497961 0.272254 0.272769839 0.220564634 0.15641281]
[0.263157606 0.265720904 0.266200244 0.21705614 0.155149609]
[0.257246554 0.259638608 0.260085613 0.213710397 0.153916568]
[0.251718313 0.25395745 0.254375577 0.210515186 0.152712509]
[0.246533215 0.248635098 0.249027327 0.207459539 0.151536316]
[0.241657034 0.243635193 0.244004101 0.204533577 0.15038693]
[0.237060249 0.238926381 0.239274174 0.201728329 0.149263337]
[0.232717097 0.234481394 0.234810054 0.199035719 0.148164615]
[0.228605017 0.230276451 0.230587661 0.196448416 0.147089839]
[0.224704206 0.226290658 0.22658591 0.193959698 0.14603813]
[0.220997125 0.222505584 0.222786173 0.191563457 0.145008713]
<tf.Tensor: shape=(5,), dtype=float32, numpy=
array([0.21746822, 0.21890487, 0.21917202, 0.18925412, 0.14400077],
      dtype=float32)>

Si tiene curiosidad, puede inspeccionar el código que genera el autógrafo.

print(tf.autograph.to_code(f.python_function))
def tf__f(x):
    with ag__.FunctionScope('f', 'fscope', ag__.ConversionOptions(recursive=True, user_requested=True, optional_features=(), internal_convert_user_code=True)) as fscope:
        do_return = False
        retval_ = ag__.UndefinedReturnValue()

        def get_state():
            return (x,)

        def set_state(vars_):
            nonlocal x
            (x,) = vars_

        def loop_body():
            nonlocal x
            ag__.converted_call(ag__.ld(tf).print, (ag__.ld(x),), None, fscope)
            x = ag__.converted_call(ag__.ld(tf).tanh, (ag__.ld(x),), None, fscope)

        def loop_test():
            return (ag__.converted_call(ag__.ld(tf).reduce_sum, (ag__.ld(x),), None, fscope) > 1)
        ag__.while_stmt(loop_test, loop_body, get_state, set_state, ('x',), {})
        try:
            do_return = True
            retval_ = ag__.ld(x)
        except:
            do_return = False
            raise
        return fscope.ret(retval_, do_return)

Condicionales

AutoGraph convertirá algunos if <condition> declaraciones en el equivalente tf.cond llamadas. Esta sustitución se hace si <condition> es un tensor. De lo contrario, el if sentencia se ejecutará como un condicional Python.

Un condicional de Python se ejecuta durante el seguimiento, por lo que se agregará al gráfico exactamente una rama del condicional. Sin AutoGraph, este gráfico trazado no podría tomar la rama alternativa si hay un flujo de control dependiente de los datos.

tf.cond trazas y añade las dos ramas de la condicional para el gráfico, seleccionando dinámicamente una rama en tiempo de ejecución. El rastreo puede tener efectos secundarios no deseados; echa un vistazo a los efectos de autógrafos rastreo para más información.

@tf.function
def fizzbuzz(n):
  for i in tf.range(1, n + 1):
    print('Tracing for loop')
    if i % 15 == 0:
      print('Tracing fizzbuzz branch')
      tf.print('fizzbuzz')
    elif i % 3 == 0:
      print('Tracing fizz branch')
      tf.print('fizz')
    elif i % 5 == 0:
      print('Tracing buzz branch')
      tf.print('buzz')
    else:
      print('Tracing default branch')
      tf.print(i)

fizzbuzz(tf.constant(5))
fizzbuzz(tf.constant(20))
Tracing for loop
Tracing fizzbuzz branch
Tracing fizz branch
Tracing buzz branch
Tracing default branch
1
2
fizz
4
buzz
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
16
17
fizz
19
buzz

Ver la documentación de referencia de restricciones adicionales en AutoGraph convertida si las declaraciones.

Bucles

AutoGraph convertirá algunos for y while las declaraciones en el TensorFlow equivalente bucle de operaciones, como tf.while_loop . Si no convertido, el for o while bucle se ejecuta como un bucle Python.

Esta sustitución se realiza en las siguientes situaciones:

  • for x in y : si y es un tensor, convertido al tf.while_loop . En el caso especial en que y es un tf.data.Dataset , una combinación de tf.data.Dataset se generan ops.
  • while <condition> : si <condition> es un tensor, convertido al tf.while_loop .

Un pitón ejecuta un lazo durante el trazado, añadiendo ops adicionales a la tf.Graph para cada iteración del bucle.

Un bucle de TensorFlow rastrea el cuerpo del bucle y selecciona dinámicamente cuántas iteraciones se ejecutarán en el momento de la ejecución. El cuerpo del bucle sólo aparece una vez en el generado tf.Graph .

Consulte la documentación de referencia de restricciones adicionales en AutoGraph convertida for y while los estados.

Bucle sobre datos de Python

Un error común es bucle sobre datos Python / NumPy dentro de un tf.function . Este bucle se ejecutará durante el proceso de rastreo, añadiendo una copia de su modelo para el tf.Graph para cada iteración del bucle.

Si desea envolver todo el circuito de formación en tf.function , la forma más segura de hacer esto es para envolver sus datos como tf.data.Dataset modo que AutoGraph de forma dinámica desenrollar el bucle de entrenamiento.

def measure_graph_size(f, *args):
  g = f.get_concrete_function(*args).graph
  print("{}({}) contains {} nodes in its graph".format(
      f.__name__, ', '.join(map(str, args)), len(g.as_graph_def().node)))

@tf.function
def train(dataset):
  loss = tf.constant(0)
  for x, y in dataset:
    loss += tf.abs(y - x) # Some dummy computation.
  return loss

small_data = [(1, 1)] * 3
big_data = [(1, 1)] * 10
measure_graph_size(train, small_data)
measure_graph_size(train, big_data)

measure_graph_size(train, tf.data.Dataset.from_generator(
    lambda: small_data, (tf.int32, tf.int32)))
measure_graph_size(train, tf.data.Dataset.from_generator(
    lambda: big_data, (tf.int32, tf.int32)))
train([(1, 1), (1, 1), (1, 1)]) contains 11 nodes in its graph
train([(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)]) contains 32 nodes in its graph
train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 6 nodes in its graph
train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 6 nodes in its graph

Al envolver los datos de Python / NumPy en un conjunto de datos, ser conscientes de tf.data.Dataset.from_generator frente tf.data.Dataset.from_tensors . El primero será mantener los datos en Python y recogerla a través de tf.py_function que puede tener implicaciones en el rendimiento, mientras que el último se bundle una copia de los datos como una gran tf.constant() nodo en el gráfico, que puede tener implicaciones de memoria.

Leer datos de archivos a través de TFRecordDataset , CsvDataset , etc., es la forma más eficaz para consumir datos, como entonces TensorFlow sí mismo puede gestionar la carga asíncrona y la obtención previa de los datos, sin tener que involucrar Python. Para obtener más información, consulte la tf.data : Tuberías de entrada de generación TensorFlow guían.

Acumulando valores en un bucle

Un patrón común es acumular valores intermedios de un bucle. Normalmente, esto se logra agregando a una lista de Python o agregando entradas a un diccionario de Python. Sin embargo, como se trata de efectos secundarios de Python, no funcionarán como se esperaba en un ciclo desenrollado dinámicamente. Uso tf.TensorArray para acumular los resultados de un bucle dinámicamente desenrollado.

batch_size = 2
seq_len = 3
feature_size = 4

def rnn_step(inp, state):
  return inp + state

@tf.function
def dynamic_rnn(rnn_step, input_data, initial_state):
  # [batch, time, features] -> [time, batch, features]
  input_data = tf.transpose(input_data, [1, 0, 2])
  max_seq_len = input_data.shape[0]

  states = tf.TensorArray(tf.float32, size=max_seq_len)
  state = initial_state
  for i in tf.range(max_seq_len):
    state = rnn_step(input_data[i], state)
    states = states.write(i, state)
  return tf.transpose(states.stack(), [1, 0, 2])

dynamic_rnn(rnn_step,
            tf.random.uniform([batch_size, seq_len, feature_size]),
            tf.zeros([batch_size, feature_size]))
<tf.Tensor: shape=(2, 3, 4), dtype=float32, numpy=
array([[[0.06309307, 0.9938811 , 0.90789986, 0.42136216],
        [0.44997275, 1.9107027 , 1.0716251 , 0.717237  ],
        [0.6026064 , 2.1622117 , 1.4164022 , 1.4153863 ]],

       [[0.04946005, 0.69127274, 0.56848884, 0.22406638],
        [0.8148316 , 1.0278493 , 0.6207781 , 1.1935129 ],
        [0.9178308 , 1.320889  , 0.989761  , 2.0120025 ]]], dtype=float32)>

Limitaciones

TensorFlow Function tiene algunas limitaciones de diseño que usted debe tener en cuenta al convertir una función de Python a una Function .

Ejecutando efectos secundarios de Python

Los efectos secundarios, como la impresión, añadiendo a las listas, y mutando globales, pueden comportarse de forma inesperada dentro de una Function , a veces la ejecución de dos veces o no todos. Ellos sólo ocurren la primera vez que se llama a una Function con un conjunto de entradas. Posteriormente, el trazado tf.Graph se reejecutar, sin ejecutar el código Python.

La regla general es evitar depender de los efectos secundarios de Python en su lógica y usarlos solo para depurar sus rastros. De lo contrario, las API TensorFlow como tf.data , tf.print , tf.summary , tf.Variable.assign y tf.TensorArray son la mejor manera de asegurar que su código será ejecutado por el tiempo de ejecución TensorFlow con cada llamada.

@tf.function
def f(x):
  print("Traced with", x)
  tf.print("Executed with", x)

f(1)
f(1)
f(2)
Traced with 1
Executed with 1
Executed with 1
Traced with 2
Executed with 2

Si desea ejecutar código Python durante cada invocación de una Function , tf.py_function es una escotilla de salida. El inconveniente de tf.py_function es que no es portable o particularmente performante, no se puede guardar con SavedModel, y no funciona bien en configuraciones distribuidas (multi-GPU, TPU). Además, dado que tf.py_function tiene que ser conectado en el gráfico, se arroja todas las entradas / salidas de los tensores.

Cambiar las variables globales y libres de Python

Cambio de Python globales y variables libres cuenta como un efecto secundario de Python, por lo que sólo ocurre durante el trazado.

external_list = []

@tf.function
def side_effect(x):
  print('Python side effect')
  external_list.append(x)

side_effect(1)
side_effect(1)
side_effect(1)
# The list append only happened once!
assert len(external_list) == 1
Python side effect

A veces, los comportamientos inesperados son muy difíciles de notar. En el ejemplo siguiente, el counter está destinado a salvaguardar el incremento de una variable. Sin embargo, debido a que es un entero de Python y no un objeto de TensorFlow, su valor se captura durante el primer seguimiento. Cuando el tf.function se utiliza, el assign_add se grabará sin condiciones en el gráfico subyacente. Por lo tanto v se incrementará en 1, cada vez que el tf.function se llama. Este problema es común entre los usuarios que intentan migrar su Grpah-modo de código de Tensorflow a Tensorflow 2 usando tf.function decoradores, cuando pitón efectos secundarios (el counter se utilizan en el ejemplo) para determinar qué ops a run ( assign_add en el ejemplo ). Por lo general, los usuarios se dan cuenta de esto solo después de ver resultados numéricos sospechosos o un rendimiento significativamente más bajo de lo esperado (por ejemplo, si la operación protegida es muy costosa).

class Model(tf.Module):
  def __init__(self):
    self.v = tf.Variable(0)
    self.counter = 0

  @tf.function
  def __call__(self):
    if self.counter == 0:
      # A python side-effect
      self.counter += 1
      self.v.assign_add(1)

    return self.v

m = Model()
for n in range(3):
  print(m().numpy()) # prints 1, 2, 3
1
2
3

Una solución para lograr el comportamiento esperado está utilizando tf.init_scope para levantar las operaciones fuera de la gráfica de la función. Esto asegura que el incremento variable solo se realice una vez durante el tiempo de seguimiento. Cabe señalar init_scope tiene otros efectos secundarios que incluyen flujo de control despejado y cinta de gradiente. A veces, el uso de init_scope puede llegar a ser demasiado complejo para gestionar de manera realista.

class Model(tf.Module):
  def __init__(self):
    self.v = tf.Variable(0)
    self.counter = 0

  @tf.function
  def __call__(self):
    if self.counter == 0:
      # Lifts ops out of function-building graphs
      with tf.init_scope():
        self.counter += 1
        self.v.assign_add(1)

    return self.v

m = Model()
for n in range(3):
  print(m().numpy()) # prints 1, 1, 1
1
1
1

En resumen, como regla general, se debe evitar la mutación de pitón objetos tales como números enteros o envases como listas que viven fuera de la Function . En su lugar, use argumentos y objetos TF. Por ejemplo, la sección de "acumulación de valores en un bucle" tiene un ejemplo de cómo lista-operaciones similares puede ser implementado.

Se puede, en algunos casos, capturar y manipular si se trata de un tf.Variable . Así es como los pesos de los modelos Keras se actualizan con repetidas llamadas a la misma ConcreteFunction .

Usando iteradores y generadores de Python

Muchas características de Python, como generadores e iteradores, dependen del tiempo de ejecución de Python para realizar un seguimiento del estado. En general, si bien estas construcciones funcionan como se esperaba en el modo ansioso, son ejemplos de efectos secundarios de Python y, por lo tanto, solo ocurren durante el seguimiento.

@tf.function
def buggy_consume_next(iterator):
  tf.print("Value:", next(iterator))

iterator = iter([1, 2, 3])
buggy_consume_next(iterator)
# This reuses the first value from the iterator, rather than consuming the next value.
buggy_consume_next(iterator)
buggy_consume_next(iterator)
Value: 1
Value: 1
Value: 1

Al igual que cómo un TensorFlow ha especializado tf.TensorArray para las construcciones de la lista, se ha especializado un tf.data.Iterator para la iteración construcciones. Vea la sección sobre las transformaciones autógrafo para una visión general. Además, el tf.data API puede ayudar a poner en práctica las pautas del generador:

@tf.function
def good_consume_next(iterator):
  # This is ok, iterator is a tf.data.Iterator
  tf.print("Value:", next(iterator))

ds = tf.data.Dataset.from_tensor_slices([1, 2, 3])
iterator = iter(ds)
good_consume_next(iterator)
good_consume_next(iterator)
good_consume_next(iterator)
Value: 1
Value: 2
Value: 3

Todas las salidas de una función tf. Deben ser valores de retorno

Con la excepción de tf.Variable s, un tf.function debe devolver todas sus salidas. Intentar acceder directamente a los tensores desde una función sin pasar por los valores de retorno provoca "fugas".

Por ejemplo, la función por debajo de "fugas" el tensor a través de la mundial Python x :

x = None

@tf.function
def leaky_function(a):
  global x
  x = a + 1  # Bad - leaks local tensor
  return a + 2

correct_a = leaky_function(tf.constant(1))

print(correct_a.numpy())  # Good - value obtained from function's returns
try:
  x.numpy()  # Bad - tensor leaked from inside the function, cannot be used here
except AttributeError as expected:
  print(expected)
3
'Tensor' object has no attribute 'numpy'

Esto es cierto incluso si también se devuelve el valor filtrado:

@tf.function
def leaky_function(a):
  global x
  x = a + 1  # Bad - leaks local tensor
  return x  # Good - uses local tensor

correct_a = leaky_function(tf.constant(1))

print(correct_a.numpy())  # Good - value obtained from function's returns
try:
  x.numpy()  # Bad - tensor leaked from inside the function, cannot be used here
except AttributeError as expected:
  print(expected)

@tf.function
def captures_leaked_tensor(b):
  b += x  # Bad - `x` is leaked from `leaky_function`
  return b

with assert_raises(TypeError):
  captures_leaked_tensor(tf.constant(2))
2
'Tensor' object has no attribute 'numpy'
Caught expected exception 
  <class 'TypeError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/566849597.py", line 21, in <module>
    captures_leaked_tensor(tf.constant(2))
TypeError: Originated from a graph execution error.

The graph execution error is detected at a node built at (most recent call last):
>>>  File /usr/lib/python3.7/runpy.py, line 193, in _run_module_as_main
>>>  File /usr/lib/python3.7/runpy.py, line 85, in _run_code
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py, line 16, in <module>
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/traitlets/config/application.py, line 846, in launch_instance
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelapp.py, line 677, in start
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tornado/platform/asyncio.py, line 199, in start
>>>  File /usr/lib/python3.7/asyncio/base_events.py, line 534, in run_forever
>>>  File /usr/lib/python3.7/asyncio/base_events.py, line 1771, in _run_once
>>>  File /usr/lib/python3.7/asyncio/events.py, line 88, in _run
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 457, in dispatch_queue
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 446, in process_one
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 353, in dispatch_shell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 648, in execute_request
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/ipkernel.py, line 353, in do_execute
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/zmqshell.py, line 533, in run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 2902, in run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 2947, in _run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/async_helpers.py, line 68, in _pseudo_sync_runner
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3173, in run_cell_async
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3364, in run_ast_nodes
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3444, in run_code
>>>  File /tmp/ipykernel_26244/566849597.py, line 7, in <module>
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 910, in __call__
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 958, in _call
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 781, in _initialize
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3157, in _get_concrete_function_internal_garbage_collected
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3557, in _maybe_define_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3402, in _create_graph_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 1143, in func_graph_from_py_func
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 672, in wrapped_fn
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 1125, in autograph_handler
>>>  File /tmp/ipykernel_26244/566849597.py, line 4, in leaky_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py, line 1383, in binary_op_wrapper
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py, line 1096, in op_dispatch_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py, line 1737, in _add_dispatch
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/gen_math_ops.py, line 476, in add_v2
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py, line 746, in _apply_op_helper
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 691, in _create_op_internal
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/ops.py, line 3705, in _create_op_internal
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/ops.py, line 2101, in __init__

Error detected in node 'add' defined at: File "/tmp/ipykernel_26244/566849597.py", line 4, in leaky_function

TypeError: tf.Graph captured an external symbolic tensor. The symbolic tensor 'add:0' created by node 'add' is captured by the tf.Graph being executed as an input. But a tf.Graph is not allowed to take symbolic tensors from another graph as its inputs. Make sure all captured inputs of the executing tf.Graph are not symbolic tensors. Use return values, explicit Python locals or TensorFlow collections to access it. Please see https://www.tensorflow.org/guide/function#all_outputs_of_a_tffunction_must_be_return_values for more information.

Por lo general, se producen fugas como estas cuando se utilizan declaraciones o estructuras de datos de Python. Además de filtrar tensores inaccesibles, es probable que estas declaraciones también sean incorrectas porque cuentan como efectos secundarios de Python y no se garantiza que se ejecuten en cada llamada de función.

Las formas comunes de filtrar tensores locales también incluyen mutar una colección de Python externa o un objeto:

class MyClass:

  def __init__(self):
    self.field = None

external_list = []
external_object = MyClass()

def leaky_function():
  a = tf.constant(1)
  external_list.append(a)  # Bad - leaks tensor
  external_object.field = a  # Bad - leaks tensor

No se admiten funciones tf. Recursivas

Recursivas Function s no son compatibles y pueden causar bucles infinitos. Por ejemplo,

@tf.function
def recursive_fn(n):
  if n > 0:
    return recursive_fn(n - 1)
  else:
    return 1

with assert_raises(Exception):
  recursive_fn(tf.constant(5))  # Bad - maximum recursion error.
Caught expected exception 
  <class 'Exception'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/2233998312.py", line 9, in <module>
    recursive_fn(tf.constant(5))  # Bad - maximum recursion error.
tensorflow.python.autograph.impl.api.StagingError: in user code:

    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 3, in recursive_fn  *
        if n > 0:
    File "/usr/lib/python3.7/abc.py", line 139, in __instancecheck__
        return _abc_instancecheck(cls, instance)

    RecursionError: maximum recursion depth exceeded while calling a Python object

Incluso si un recursivo Function parece funcionar, la función pitón será remontado varias veces y podría tener implicaciones rendimiento. Por ejemplo,

@tf.function
def recursive_fn(n):
  if n > 0:
    print('tracing')
    return recursive_fn(n - 1)
  else:
    return 1

recursive_fn(5)  # Warning - multiple tracings
tracing
tracing
tracing
tracing
tracing
<tf.Tensor: shape=(), dtype=int32, numpy=1>

Problemas conocidos

Si su Function no está evaluando correctamente, el error puede ser explicada por estos problemas conocidos que se prevé que se fije en el futuro.

Dependiendo de las variables globales y libres de Python

Function crea un nuevo ConcreteFunction cuando se le llama con un nuevo valor de un argumento de Python. Sin embargo, no hace que para el cierre del pitón, globales o no locales de esa Function . Si su valor cambia entre llamadas a la Function , la Function seguirá usando los valores que tenían cuando se trazó. Esto es diferente de cómo funcionan las funciones normales de Python.

Por esa razón, debe seguir un estilo de programación funcional que use argumentos en lugar de cerrar nombres externos.

@tf.function
def buggy_add():
  return 1 + foo

@tf.function
def recommended_add(foo):
  return 1 + foo

foo = 1
print("Buggy:", buggy_add())
print("Correct:", recommended_add(foo))
Buggy: tf.Tensor(2, shape=(), dtype=int32)
Correct: tf.Tensor(2, shape=(), dtype=int32)
print("Updating the value of `foo` to 100!")
foo = 100
print("Buggy:", buggy_add())  # Did not change!
print("Correct:", recommended_add(foo))
Updating the value of `foo` to 100!
Buggy: tf.Tensor(2, shape=(), dtype=int32)
Correct: tf.Tensor(101, shape=(), dtype=int32)

Otra manera de actualizar un valor global, es para que sea un tf.Variable y utilizar el Variable.assign método en su lugar.

@tf.function
def variable_add():
  return 1 + foo

foo = tf.Variable(1)
print("Variable:", variable_add())
Variable: tf.Tensor(2, shape=(), dtype=int32)
print("Updating the value of `foo` to 100!")
foo.assign(100)
print("Variable:", variable_add())
Updating the value of `foo` to 100!
Variable: tf.Tensor(101, shape=(), dtype=int32)

Dependiendo de los objetos de Python

La recomendación para pasar objetos de Python como argumentos en tf.function tiene una serie de problemas conocidos, que se espera que se fije en el futuro. En general, se puede confiar en el seguimiento coherente si se utiliza una primitiva o Python tf.nest estructura compatible como un argumento o pasar en una instancia diferente de un objeto en una Function . Sin embargo, Function no creará una nueva traza cuando se pasa el mismo objeto y sólo cambiar sus atributos.

class SimpleModel(tf.Module):
  def __init__(self):
    # These values are *not* tf.Variables.
    self.bias = 0.
    self.weight = 2.

@tf.function
def evaluate(model, x):
  return model.weight * x + model.bias

simple_model = SimpleModel()
x = tf.constant(10.)
print(evaluate(simple_model, x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
simple_model.bias += 5.0
print(evaluate(simple_model, x))  # Didn't change :(
Adding bias!
tf.Tensor(20.0, shape=(), dtype=float32)

Utilizando la misma Function para evaluar la instancia actualizada del modelo será con errores ya que el modelo actualizado tiene la misma clave de caché como el modelo original.

Por esa razón, se le recomienda escribir su Function de evitar en función de atributos de los objetos mutables o crear nuevos objetos.

Si eso no es posible, una solución consiste en hacer la nueva Function s cada vez que se modifica el objeto en vigor desandar:

def evaluate(model, x):
  return model.weight * x + model.bias

new_model = SimpleModel()
evaluate_no_bias = tf.function(evaluate).get_concrete_function(new_model, x)
# Don't pass in `new_model`, `Function` already captured its state during tracing.
print(evaluate_no_bias(x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
new_model.bias += 5.0
# Create new Function and ConcreteFunction since you modified new_model.
evaluate_with_bias = tf.function(evaluate).get_concrete_function(new_model, x)
print(evaluate_with_bias(x)) # Don't pass in `new_model`.
Adding bias!
tf.Tensor(25.0, shape=(), dtype=float32)

Como calco puede ser costoso , puede utilizar tf.Variable s como atributos de los objetos, que pueden ser mutados (pero no cambiaron, cuidado!) Para un efecto similar sin necesidad de un retrazo.

class BetterModel:

  def __init__(self):
    self.bias = tf.Variable(0.)
    self.weight = tf.Variable(2.)

@tf.function
def evaluate(model, x):
  return model.weight * x + model.bias

better_model = BetterModel()
print(evaluate(better_model, x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
better_model.bias.assign_add(5.0)  # Note: instead of better_model.bias += 5
print(evaluate(better_model, x))  # This works!
Adding bias!
tf.Tensor(25.0, shape=(), dtype=float32)

Creando tf.Variables

Function sólo es compatible con Singleton tf.Variable s creará una vez en la primera llamada, y reutilizar en llamadas a funciones posteriores. El fragmento de código a continuación crearía un nuevo tf.Variable en cada llamada a la función, lo que resulta en un ValueError excepción.

Ejemplo:

@tf.function
def f(x):
  v = tf.Variable(1.0)
  return v

with assert_raises(ValueError):
  f(1.0)
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3018268426.py", line 7, in <module>
    f(1.0)
ValueError: in user code:

    File "/tmp/ipykernel_26244/3018268426.py", line 3, in f  *
        v = tf.Variable(1.0)

    ValueError: tf.function only supports singleton tf.Variables created on the first call. Make sure the tf.Variable is only created once or created outside tf.function. See https://www.tensorflow.org/guide/function#creating_tfvariables for more information.

Un patrón común que se utiliza para evitar esta limitación es comenzar con un valor Ninguno Python, a continuación, crear la forma condicional tf.Variable si el valor es Ninguno:

class Count(tf.Module):
  def __init__(self):
    self.count = None

  @tf.function
  def __call__(self):
    if self.count is None:
      self.count = tf.Variable(0)
    return self.count.assign_add(1)

c = Count()
print(c())
print(c())
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)

Usar con múltiples optimizadores de Keras

Es posible que encuentre ValueError: tf.function only supports singleton tf.Variables created on the first call. cuando se utiliza más de un optimizador Keras con un tf.function . Este error se produce porque los optimizadores internamente crean tf.Variables cuando se aplican gradientes por primera vez.

opt1 = tf.keras.optimizers.Adam(learning_rate = 1e-2)
opt2 = tf.keras.optimizers.Adam(learning_rate = 1e-3)

@tf.function
def train_step(w, x, y, optimizer):
   with tf.GradientTape() as tape:
       L = tf.reduce_sum(tf.square(w*x - y))
   gradients = tape.gradient(L, [w])
   optimizer.apply_gradients(zip(gradients, [w]))

w = tf.Variable(2.)
x = tf.constant([-1.])
y = tf.constant([2.])

train_step(w, x, y, opt1)
print("Calling `train_step` with different optimizer...")
with assert_raises(ValueError):
  train_step(w, x, y, opt2)
Calling `train_step` with different optimizer...
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3167358578.py", line 18, in <module>
    train_step(w, x, y, opt2)
ValueError: in user code:

    File "/tmp/ipykernel_26244/3167358578.py", line 9, in train_step  *
        optimizer.apply_gradients(zip(gradients, [w]))
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 639, in apply_gradients  **
        self._create_all_weights(var_list)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 828, in _create_all_weights
        _ = self.iterations
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 835, in __getattribute__
        return super(OptimizerV2, self).__getattribute__(name)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 995, in iterations
        aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 1202, in add_weight
        aggregation=aggregation)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer_utils.py", line 129, in make_variable
        shape=variable_shape if variable_shape else None)

    ValueError: tf.function only supports singleton tf.Variables created on the first call. Make sure the tf.Variable is only created once or created outside tf.function. See https://www.tensorflow.org/guide/function#creating_tfvariables for more information.

Si necesita cambiar el optimizador durante el entrenamiento, una solución es crear una nueva Function para cada optimizador, llamando a la ConcreteFunction directamente.

opt1 = tf.keras.optimizers.Adam(learning_rate = 1e-2)
opt2 = tf.keras.optimizers.Adam(learning_rate = 1e-3)

# Not a tf.function.
def train_step(w, x, y, optimizer):
   with tf.GradientTape() as tape:
       L = tf.reduce_sum(tf.square(w*x - y))
   gradients = tape.gradient(L, [w])
   optimizer.apply_gradients(zip(gradients, [w]))

w = tf.Variable(2.)
x = tf.constant([-1.])
y = tf.constant([2.])

# Make a new Function and ConcreteFunction for each optimizer.
train_step_1 = tf.function(train_step).get_concrete_function(w, x, y, opt1)
train_step_2 = tf.function(train_step).get_concrete_function(w, x, y, opt2)
for i in range(10):
  if i % 2 == 0:
    train_step_1(w, x, y) # `opt1` is not used as a parameter. 
  else:
    train_step_2(w, x, y) # `opt2` is not used as a parameter.

Usar con múltiples modelos de Keras

También puede encontrar ValueError: tf.function only supports singleton tf.Variables created on the first call. al pasar diferentes instancias de modelo a la misma Function .

Este error se produce porque los modelos Keras (que no tienen su entrada de forma definida ) y capas Keras crean tf.Variables s cuando se les llama primero. Se le puede intentar inicializar las variables dentro de una Function , que ya ha sido llamado. Para evitar este error, intente llamar model.build(input_shape) para inicializar todos los pesos antes de entrenar el modelo.

Otras lecturas

Para obtener información sobre cómo exportar y cargar una Function , consulte la guía SavedModel . Para obtener más información sobre optimizaciones gráficas que se realiza después del seguimiento, consulte la guía Grappler . Para aprender a optimizar su flujo de datos y el perfil de su modelo, consulte la guía de perfiles .