דף זה תורגם על ידי Cloud Translation API.
Switch to English

יצירת מודלים של Keras עם שכבות TFL

צפה ב- TensorFlow.org הפעל בגוגל קולאב צפה במקור ב- GitHub הורד מחברת

סקירה כללית

אתה יכול להשתמש בשכבות KFL של KFL כדי לבנות מודלים של Keras עם מונוטוניות ואילוצי צורה אחרים. דוגמה זו בונה ומאמן מודל סריג מכויל עבור מערך הלב UCI באמצעות שכבות TFL.

במודל סריג מכויל, כל תכונה הופכת על ידי tfl.layers.PWLCalibration או שכבת tfl.layers.CategoricalCalibration באופן לא ליניארי באמצעות tfl.layers.Lattice .

להכין

התקנת חבילת סריג TF:

pip install -q tensorflow-lattice pydot

ייבוא ​​חבילות נדרשות:

import tensorflow as tf

import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
from tensorflow import feature_column as fc
logging.disable(sys.maxsize)

הורדת הנתונים UCI Statlog (Heart):

# UCI Statlog (Heart) dataset.
csv_file = tf.keras.utils.get_file(
    'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv')
training_data_df = pd.read_csv(csv_file).sample(
    frac=1.0, random_state=41).reset_index(drop=True)
training_data_df.head()
Downloading data from http://storage.googleapis.com/applied-dl/heart.csv
16384/13273 [=====================================] - 0s 0us/step

הגדרת ערכי ברירת המחדל שימשו לאימונים במדריך זה:

LEARNING_RATE = 0.1
BATCH_SIZE = 128
NUM_EPOCHS = 100

מודל קרס רצף

דוגמה זו יוצרת מודל רצף של Keras ומשתמשת רק בשכבות TFL.

שכבות סריג מצפות input[i] יהיה בתוך [0, lattice_sizes[i] - 1.0] , לכן עלינו להגדיר את גדלי הסריג לפני שכבות הכיול, כדי שנוכל לציין נכון את טווח הפלט של שכבות הכיול.

# Lattice layer expects input[i] to be within [0, lattice_sizes[i] - 1.0], so
lattice_sizes = [3, 2, 2, 2, 2, 2, 2]

אנו משתמשים בשכבת tfl.layers.ParallelCombination כדי לקבץ שכבות כיול שצריך לבצע במקביל על מנת שנוכל ליצור מודל רציף.

combined_calibrators = tfl.layers.ParallelCombination()

אנו יוצרים שכבת כיול לכל תכונה ומוסיפים אותה לשכבת השילוב המקבילה. עבור תכונות מספריות אנו משתמשים ב- tfl.layers.PWLCalibration , tfl.layers.PWLCalibration קטגוריות אנו משתמשים ב- tfl.layers.CategoricalCalibration .

# ############### age ###############
calibrator = tfl.layers.PWLCalibration(
    # Every PWLCalibration layer must have keypoints of piecewise linear
    # function specified. Easiest way to specify them is to uniformly cover
    # entire input range by using numpy.linspace().
    input_keypoints=np.linspace(
        training_data_df['age'].min(), training_data_df['age'].max(), num=5),
    # You need to ensure that input keypoints have same dtype as layer input.
    # You can do it by setting dtype here or by providing keypoints in such
    # format which will be converted to desired tf.dtype by default.
    dtype=tf.float32,
    # Output range must correspond to expected lattice input range.
    output_min=0.0,
    output_max=lattice_sizes[0] - 1.0,
)
combined_calibrators.append(calibrator)

# ############### sex ###############
# For boolean features simply specify CategoricalCalibration layer with 2
# buckets.
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[1] - 1.0,
    # Initializes all outputs to (output_min + output_max) / 2.0.
    kernel_initializer='constant')
combined_calibrators.append(calibrator)

# ############### cp ###############
calibrator = tfl.layers.PWLCalibration(
    # Here instead of specifying dtype of layer we convert keypoints into
    # np.float32.
    input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32),
    output_min=0.0,
    output_max=lattice_sizes[2] - 1.0,
    monotonicity='increasing',
    # You can specify TFL regularizers as a tuple ('regularizer name', l1, l2).
    kernel_regularizer=('hessian', 0.0, 1e-4))
combined_calibrators.append(calibrator)

# ############### trestbps ###############
calibrator = tfl.layers.PWLCalibration(
    # Alternatively, you might want to use quantiles as keypoints instead of
    # uniform keypoints
    input_keypoints=np.quantile(training_data_df['trestbps'],
                                np.linspace(0.0, 1.0, num=5)),
    dtype=tf.float32,
    # Together with quantile keypoints you might want to initialize piecewise
    # linear function to have 'equal_slopes' in order for output of layer
    # after initialization to preserve original distribution.
    kernel_initializer='equal_slopes',
    output_min=0.0,
    output_max=lattice_sizes[3] - 1.0,
    # You might consider clamping extreme inputs of the calibrator to output
    # bounds.
    clamp_min=True,
    clamp_max=True,
    monotonicity='increasing')
combined_calibrators.append(calibrator)

# ############### chol ###############
calibrator = tfl.layers.PWLCalibration(
    # Explicit input keypoint initialization.
    input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
    dtype=tf.float32,
    output_min=0.0,
    output_max=lattice_sizes[4] - 1.0,
    # Monotonicity of calibrator can be decreasing. Note that corresponding
    # lattice dimension must have INCREASING monotonicity regardless of
    # monotonicity direction of calibrator.
    monotonicity='decreasing',
    # Convexity together with decreasing monotonicity result in diminishing
    # return constraint.
    convexity='convex',
    # You can specify list of regularizers. You are not limited to TFL
    # regularizrs. Feel free to use any :)
    kernel_regularizer=[('laplacian', 0.0, 1e-4),
                        tf.keras.regularizers.l1_l2(l1=0.001)])
combined_calibrators.append(calibrator)

# ############### fbs ###############
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[5] - 1.0,
    # For categorical calibration layer monotonicity is specified for pairs
    # of indices of categories. Output for first category in pair will be
    # smaller than output for second category.
    #
    # Don't forget to set monotonicity of corresponding dimension of Lattice
    # layer to '1'.
    monotonicities=[(0, 1)],
    # This initializer is identical to default one('uniform'), but has fixed
    # seed in order to simplify experimentation.
    kernel_initializer=tf.keras.initializers.RandomUniform(
        minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1))
combined_calibrators.append(calibrator)

# ############### restecg ###############
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=3,
    output_min=0.0,
    output_max=lattice_sizes[6] - 1.0,
    # Categorical monotonicity can be partial order.
    monotonicities=[(0, 1), (0, 2)],
    # Categorical calibration layer supports standard Keras regularizers.
    kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001),
    kernel_initializer='constant')
combined_calibrators.append(calibrator)

לאחר מכן אנו יוצרים שכבת סריג כדי להתיך באופן לא ליניארי את תפוקות הכיול.

שים לב שעלינו לציין את המונוטוניות של הסריג שיגדל עבור הממדים הנדרשים. ההרכב עם כיוון המונוטוניות בכיול יביא לכיוון הנכון של קצה לקצה. זה כולל מונוטוניות חלקית של שכבת כיול קטגורית.

lattice = tfl.layers.Lattice(
    lattice_sizes=lattice_sizes,
    monotonicities=[
        'increasing', 'none', 'increasing', 'increasing', 'increasing',
        'increasing', 'increasing'
    ],
    output_min=0.0,
    output_max=1.0)

לאחר מכן נוכל ליצור מודל רציף באמצעות הכיול והשכבות המשולבות המשולבות.

model = tf.keras.models.Sequential()
model.add(combined_calibrators)
model.add(lattice)

האימון עובד זהה לכל מודל קרס אחר.

features = training_data_df[[
    'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg'
]].values.astype(np.float32)
target = training_data_df[['target']].values.astype(np.float32)

model.compile(
    loss=tf.keras.losses.mean_squared_error,
    optimizer=tf.keras.optimizers.Adagrad(learning_rate=LEARNING_RATE))
model.fit(
    features,
    target,
    batch_size=BATCH_SIZE,
    epochs=NUM_EPOCHS,
    validation_split=0.2,
    shuffle=False,
    verbose=0)

model.evaluate(features, target)
10/10 [==============================] - 0s 1ms/step - loss: 0.1551

0.15507389605045319

דגם Keras פונקציונלי

דוגמה זו משתמשת ב- API פונקציונלי לבניית מודלים של Keras.

כפי שצוין בסעיף הקודם, שכבות הסריג מצפות input[i] יהיה בתוך [0, lattice_sizes[i] - 1.0] , לכן עלינו להגדיר את גדלי הסריג לפני שכבות הכיול כדי שנוכל לציין כראוי את טווח הפלט של שכבות כיול.

# We are going to have 2-d embedding as one of lattice inputs.
lattice_sizes = [3, 2, 2, 3, 3, 2, 2]

עבור כל תכונה עלינו ליצור שכבת קלט ואחריה שכבת כיול. עבור תכונות מספריות אנו משתמשים ב- tfl.layers.PWLCalibration קטגוריים אנו משתמשים ב- tfl.layers.CategoricalCalibration .

model_inputs = []
lattice_inputs = []
# ############### age ###############
age_input = tf.keras.layers.Input(shape=[1], name='age')
model_inputs.append(age_input)
age_calibrator = tfl.layers.PWLCalibration(
    # Every PWLCalibration layer must have keypoints of piecewise linear
    # function specified. Easiest way to specify them is to uniformly cover
    # entire input range by using numpy.linspace().
    input_keypoints=np.linspace(
        training_data_df['age'].min(), training_data_df['age'].max(), num=5),
    # You need to ensure that input keypoints have same dtype as layer input.
    # You can do it by setting dtype here or by providing keypoints in such
    # format which will be converted to desired tf.dtype by default.
    dtype=tf.float32,
    # Output range must correspond to expected lattice input range.
    output_min=0.0,
    output_max=lattice_sizes[0] - 1.0,
    monotonicity='increasing',
    name='age_calib',
)(
    age_input)
lattice_inputs.append(age_calibrator)

# ############### sex ###############
# For boolean features simply specify CategoricalCalibration layer with 2
# buckets.
sex_input = tf.keras.layers.Input(shape=[1], name='sex')
model_inputs.append(sex_input)
sex_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[1] - 1.0,
    # Initializes all outputs to (output_min + output_max) / 2.0.
    kernel_initializer='constant',
    name='sex_calib',
)(
    sex_input)
lattice_inputs.append(sex_calibrator)

# ############### cp ###############
cp_input = tf.keras.layers.Input(shape=[1], name='cp')
model_inputs.append(cp_input)
cp_calibrator = tfl.layers.PWLCalibration(
    # Here instead of specifying dtype of layer we convert keypoints into
    # np.float32.
    input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32),
    output_min=0.0,
    output_max=lattice_sizes[2] - 1.0,
    monotonicity='increasing',
    # You can specify TFL regularizers as tuple ('regularizer name', l1, l2).
    kernel_regularizer=('hessian', 0.0, 1e-4),
    name='cp_calib',
)(
    cp_input)
lattice_inputs.append(cp_calibrator)

# ############### trestbps ###############
trestbps_input = tf.keras.layers.Input(shape=[1], name='trestbps')
model_inputs.append(trestbps_input)
trestbps_calibrator = tfl.layers.PWLCalibration(
    # Alternatively, you might want to use quantiles as keypoints instead of
    # uniform keypoints
    input_keypoints=np.quantile(training_data_df['trestbps'],
                                np.linspace(0.0, 1.0, num=5)),
    dtype=tf.float32,
    # Together with quantile keypoints you might want to initialize piecewise
    # linear function to have 'equal_slopes' in order for output of layer
    # after initialization to preserve original distribution.
    kernel_initializer='equal_slopes',
    output_min=0.0,
    output_max=lattice_sizes[3] - 1.0,
    # You might consider clamping extreme inputs of the calibrator to output
    # bounds.
    clamp_min=True,
    clamp_max=True,
    monotonicity='increasing',
    name='trestbps_calib',
)(
    trestbps_input)
lattice_inputs.append(trestbps_calibrator)

# ############### chol ###############
chol_input = tf.keras.layers.Input(shape=[1], name='chol')
model_inputs.append(chol_input)
chol_calibrator = tfl.layers.PWLCalibration(
    # Explicit input keypoint initialization.
    input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
    output_min=0.0,
    output_max=lattice_sizes[4] - 1.0,
    # Monotonicity of calibrator can be decreasing. Note that corresponding
    # lattice dimension must have INCREASING monotonicity regardless of
    # monotonicity direction of calibrator.
    monotonicity='decreasing',
    # Convexity together with decreasing monotonicity result in diminishing
    # return constraint.
    convexity='convex',
    # You can specify list of regularizers. You are not limited to TFL
    # regularizrs. Feel free to use any :)
    kernel_regularizer=[('laplacian', 0.0, 1e-4),
                        tf.keras.regularizers.l1_l2(l1=0.001)],
    name='chol_calib',
)(
    chol_input)
lattice_inputs.append(chol_calibrator)

# ############### fbs ###############
fbs_input = tf.keras.layers.Input(shape=[1], name='fbs')
model_inputs.append(fbs_input)
fbs_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[5] - 1.0,
    # For categorical calibration layer monotonicity is specified for pairs
    # of indices of categories. Output for first category in pair will be
    # smaller than output for second category.
    #
    # Don't forget to set monotonicity of corresponding dimension of Lattice
    # layer to '1'.
    monotonicities=[(0, 1)],
    # This initializer is identical to default one ('uniform'), but has fixed
    # seed in order to simplify experimentation.
    kernel_initializer=tf.keras.initializers.RandomUniform(
        minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1),
    name='fbs_calib',
)(
    fbs_input)
lattice_inputs.append(fbs_calibrator)

# ############### restecg ###############
restecg_input = tf.keras.layers.Input(shape=[1], name='restecg')
model_inputs.append(restecg_input)
restecg_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=3,
    output_min=0.0,
    output_max=lattice_sizes[6] - 1.0,
    # Categorical monotonicity can be partial order.
    monotonicities=[(0, 1), (0, 2)],
    # Categorical calibration layer supports standard Keras regularizers.
    kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001),
    kernel_initializer='constant',
    name='restecg_calib',
)(
    restecg_input)
lattice_inputs.append(restecg_calibrator)

לאחר מכן אנו יוצרים שכבת סריג כדי להתיך באופן לא לינארי את תפוקות הכיול.

שים לב שעלינו לציין את המונוטוניות של הסריג שיגדל עבור הממדים הנדרשים. ההרכב עם כיוון המונוטוניות בכיול יביא לכיוון הנכון מקצה לקצה של מונוטוניות. זה כולל מונוטוניות חלקית של שכבת tfl.layers.CategoricalCalibration .

lattice = tfl.layers.Lattice(
    lattice_sizes=lattice_sizes,
    monotonicities=[
        'increasing', 'none', 'increasing', 'increasing', 'increasing',
        'increasing', 'increasing'
    ],
    output_min=0.0,
    output_max=1.0,
    name='lattice',
)(
    lattice_inputs)

כדי להוסיף גמישות רבה יותר למודל, אנו מוסיפים שכבת כיול פלט.

model_output = tfl.layers.PWLCalibration(
    input_keypoints=np.linspace(0.0, 1.0, 5),
    name='output_calib',
)(
    lattice)

כעת אנו יכולים ליצור מודל באמצעות הכניסות והפלטים.

model = tf.keras.models.Model(
    inputs=model_inputs,
    outputs=model_output)
tf.keras.utils.plot_model(model, rankdir='LR')

png

האימון עובד זהה לכל מודל קרס אחר. שים לב, עם ההתקנה שלנו, תכונות הקלט מועברות כטנסורים נפרדים.

feature_names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg']
features = np.split(
    training_data_df[feature_names].values.astype(np.float32),
    indices_or_sections=len(feature_names),
    axis=1)
target = training_data_df[['target']].values.astype(np.float32)

model.compile(
    loss=tf.keras.losses.mean_squared_error,
    optimizer=tf.keras.optimizers.Adagrad(LEARNING_RATE))
model.fit(
    features,
    target,
    batch_size=BATCH_SIZE,
    epochs=NUM_EPOCHS,
    validation_split=0.2,
    shuffle=False,
    verbose=0)

model.evaluate(features, target)
10/10 [==============================] - 0s 1ms/step - loss: 0.1580

0.15798534452915192